Концевая Галина Владимировна

АКТИВАЦИЯ МУКОЗАЛЬНОГО ИММУНИТЕТА ЛЕГКИХ НЕИНФЕКЦИОННЫМИ СТИМУЛАМИ

Диссертация на соискание ученой степени кандидата биологических наук

Научный руководитель – доктор биологических наук, профессор М. П. Мошкин

Новосибирск – 2013
ОГЛАВЛЕНИЕ

СПИСОК СОКРАЩЕНИЙ ... 6

ВВЕДЕНИЕ.. 7

ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ... 12

1.1. Механизмы неспецифической иммунной защиты в легких 13
1.2. Иммунный ответ на бактериальный липополисахарид 15
1.3. Эндокринный ответ на активацию иммунитета 18
1.4. Различия в реакции мукозального иммунитета на инфекционные стимулы у мышей с преобладанием Th1- или Th2-типов иммунного ответа ... 24
1.5. Модуляция иммунных реакций социальными сигналами 26
1.6. Реакция мукозального иммунитета легких на наночастицы 32

ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ .. 36

2.1. Объект исследования и план проведения экспериментов 36

2.1.1. Эксперимент 1. Исследование нейроэндокринного ответа и реакции мукозального иммунитета легких самцов на интраназальную аппликацию мочи самок и бактериального липополисахарида 36
2.1.2. Эксперимент 2. Иммуно-эндокринная реакция на интраназальное введение мочи самок и иммуногенных стимулов у самцов мышей, различающихся по типу иммунного ответа .. 38
2.1.3. Эксперимент 3. Иммуно-эндокринная реакция самцов на запах полового феромона (2,5-диметилпиразин) и мочи самок 39
2.1.4. Эксперимент 4. Реакция мукозального иммунитета легких и эндокринный ответ на интраназальную аппликацию суспензии нано- и микроразмерных частиц Таркосила 25 ... 41
2.1.5. Эксперимент 5. Реакция мукозального иммунитета легких и
эндокринный ответ на хроническую экспозицию аэрозолем наночастиц Таркосила 25 у самцов мышей, различающихся по типу иммунного ответа... 42

2.2. Методики исследования .. 44
2.2.1. Сбор и хранение мочи самок ... 44
2.2.2. Подготовка наноматериала ... 44
2.2.3. Гистологическое исследование ткани легкого.. 47
2.2.4. Подсчет общего числа лейкоцитов в БАЛ... 49
2.2.5. Определение концентрации интерлейкина-1β (ИЛ-1β) в тканях легких и гипоталамуса ... 49
2.2.6. Определение концентрации цитокинов интерлейкина-1β (ИЛ-1β), гранулоцитарно-макрофагального коллинестимулирующего фактора (ГМ-КСФ) и фактора некроза опухолей-α (ФНО-α) в БАЛ.............................. 50
2.2.7. Мультиплексный анализ цитокинов в БАЛ ... 51
2.2.8. Определение концентрации белка в БАЛ ... 52
2.2.9. Определение пероксидазной активности в БАЛ.. 53
2.2.10. Определение концентрации кортикостерона в плазме крови 53
2.2.11. Определение концентрации тестостерона в плазме крови 54
2.2.12. Статистический анализ данных ... 55

ГЛАВА 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ ... 56

3.1. Иммуно-эндокринная реакция на интраназальную аппликацию мочи самок и бактериального ЛПС (Эксперимент 1). 56

3.1.1. Лейкоцитарная интервенция в легкие... 56
3.1.2. Содержание интерлейкина-1β в тканях легкого и гипоталамуса 60
3.1.3. Содержание кортикостерона в плазме крови... 62
3.1.4. Содержание тестостерона в плазме крови... 63
3.1.5. Интегративная иммуно-эндокринная реакция на мочу самок и бактериальный липополисахарид ... 64
3.2. Зависимость иммуно-эндокринной реакции на хемосигналы самок и бактериальный липополисахарид от генотипа самцов (Эксперимент 2) ... 66
3.2.1. Общее число лейкоцитов в БАЛ ... 66
3.2.2. Концентрация белка в БАЛ ... 67
3.2.3. Кортикостерон в плазме крови ... 68
3.2.4. Тестостерон в плазме крови ... 69
3.3. Иммуно-эндокринные эффекты суточной экспозиции запахом самок и феромоном стресса самок мышей (Эксперимент 3) 71
3.3.1. Показатели БАЛ .. 71
3.3.2. Количество лейкоцитов в крови ... 72
3.3.3. Тромбоциты в крови ... 73
3.3.4. Кортикостерон в плазме ... 74
3.3.5. Концентрация тестостерона в плазме ... 76
3.4. Реакция мукозального иммунитета легких и эндокринный ответ на интраназальную аппликацию суспензии нано- и микроразмерных частиц Таркосила 25 (Эксперимент 4) 78
3.4.1. Показатели БАЛ .. 78
3.4.2. Интегральная реакция мукозального иммунитета легких 80
3.4.3. Количество лейкоцитов в крови ... 83
3.4.4. Кортикостерон в плазме крови ... 85
3.4.5. Тестостерон в плазме крови ... 86
3.5. Иммуно-эндокринная реакция на многократную экспозицию аэрозолем наночастиц Таркосила 25 у самцов мышей, различающихся по типу иммунного ответа (Эксперимент 5) ... 88
3.5.1. Содержание кремния в органах ... 88
3.5.2. Показатели бронхоальвеолярного лаважа 90
3.5.3. Количество лейкоцитов в крови ... 92
3.5.4. Кортисстерон в плазме крови ... 93
3.5.5. Тестостерон в плазме крови ... 94

ГЛАВА 4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ .. 96

ЗАКЛЮЧЕНИЕ ... 107

ВЫВОДЫ .. 109

СПИСОК ЛИТЕРАТУРЫ ... 111
СПИСОК СОКРАЩЕНИЙ

АКТГ – адренокортикотропный гормон
БАЛ – бронхоальвеолярный лаваж
ГК – главная компонента
ГГНС – гипоталамо-гипофизарно-надпочечниковая система
ГМ-КСФ – гранулоцитарно-макрофагальный колониестимулирующий фактор
ДМП – 2,5-диметилпиразин
ИЛ – интерлейкин
ИФА – иммуноферментный анализ
ЛПС – липополисахарид
РИА - радиоиммунный анализ
ЦНС – центральная нервная система
ФНО – фактор некроза опухолей
TLR – Toll-like receptor
ВВЕДЕНИЕ

Актуальность

Известно, что мукозальный иммунитет легких, представленный физическими барьерами и рядом гуморальных и клеточных механизмов, играет ключевую роль в распознавании и элиминации потенциально опасных для организма патогенов. К настоящему времени хорошо изучены механизмы защитного реагирования мукозального иммунитета легких на инфекционные стимулы. Однако недавно была показана активация мукозального иммунитета легких в ответ на сигналы, сопряженные с повышением инфекционных рисков, в частности рисков, связанных с размножением. Так, экспериментально доказано, что длительная экспозиция самцов лабораторных мышей запахом загрязненной подстилки половозрелых самок, как естественного источника половых феромонов, вызывает мобилизацию лейкоцитов в легкие (Литвинова и др., 2009; Litvinova et al., 2009). Это, в свою очередь, обеспечивает большую устойчивость к экспериментальной респираторной инфекции (Litvinova et al., 2010). Такая активация неспецифической иммунной защиты в ответ на социальные стимулы, предшествующие взаимодействию особи с потенциальными источниками инфекций, может иметь адаптивное значение как механизм, ограничивающий внутрипопуляционное распространение инфекции. Однако такой механизм будет иметь реальное адаптивное значение только при условии развития реакции за короткий промежуток времени.

Как известно, при ольфакторном исследовании запаховых меток ноздрей мышей прямо соприкасаются с субстратом, что приводит к попаданию на поверхность слизистой носа субмикронных и наноразмерных частиц пыли и крупномолекулярных белковых молекул (Hurst, 1990a, 1990b; Aland and Breadley, 2003). Роль последних имеет ключевое значение для формирования социальной ольфакторной памяти (Hurst et al., 2001; Nevison et al., 2003). Если
сигнальная роль содержащихся в моче белков семейства липокалинов активно исследуется, то значение твердых аэрозолей неорганической природы остается вне поля зрения. Вместе с тем, интерес к анализу их физиологических эффектов определяется не только решением проблем хемокоммуникации, но и проблемами нанобиобезопасности, значимость которой определяется загрязнением окружающей среды твердыми аэрозолями, в том числе наноразмерными частицами. И, поскольку респираторная система, начинающая от носовой полости и далее, рассматривается в качестве основного органа мишени для наночастиц, то огромное число работ посвящено исследованию их провоспалительного эффекта в пределах легких, а также дальнейшего проникновения и распространения наноразмерных объектов в организме (Roursgaard et al., 2010; Chu et al., 2011; Borak et al., 2012; Panas et al., 2013). Несмотря на то, что доказательства провоспалительных эффектов наночастиц не вызывают сомнений, остаются практически неизученными генетически детерминированные особенности иммунного реагирования.

Клинический исход многих респираторных заболеваний зависит от генотипа животных, в частности от преобладания клеточного (Th1) или гуморального (Th2) типов иммунного ответа (Rosas et al., 2005; Paula et al., 2010). Этим могут определяться различные паттерны реагирования мукозального иммунитета легких на инфекционные стимулы (Mills et al., 2000; Watanabe et al., 2004). В связи с чем, можно предположить, что животные с разным генотипом будут по-разному реагировать и на неинфекционные стимулы, такие как половые хемосигналы самок и наночастицы. Поэтому один из вопросов, требующих решения, заключается в изучении реакций на неинфекционные стимулы у животных, характеризующихся преобладанием клеточного или гуморального иммунных ответов. Согласно данным литературы лабораторные мыши линий C57Bl и BALB/c относятся к типичным представителям животных с преобладанием Th1- и Th2- типов иммунного
реагирования, что и предопределило выбор их в качестве объектов исследования.

Исходя из сказанного, цель диссертационной работы было изучение на самцах лабораторных мышей разных генетических линий особенностей реагирования мукозального иммунитета легких на неинфекционные стимулы - половые хемосигналы самок и наночастицы.

Для достижения поставленной цели были сформулированы следующие задачи:

1. Исследовать нейроэндокринный ответ и реакцию мукозального иммунитета легких самцов лабораторных мышей на однократное предъявление половых хемосигналов самок;

2. Изучить особенности реагирования на контактное и дистантное воздействие половых хемосигналов у самцов двух линий лабораторных мышей, различающихся по типу иммунного ответа (BALB/c и C57Bl);

3. Оценить состояние мукозального иммунитета и эндокринной регуляции у самцов лабораторных мышей линий BALB/c и C57Bl при интраназальной аппликации и при ингаляции наночастиц.

Положение, выносимое на защиту

Хемосигналы и наночастицы твердых аэрозолей, содержащиеся в мочевых метках самок мышей, являются значимыми сигнальными факторами для активации мукозального иммунитета и обеспечения, тем самым, защиты от инфекций, риск которых возрастает при ольфакторном поиске полового партнера.
Научная новизна

В рамках данного исследования впервые было показано, что хемосигналы самок, как сигнал о повышении инфекционных рисков, связанных с размножением, вызывают мобилизацию лейкоцитов в легкие самцов лабораторных мышей уже через 2 часа после начала воздействия. Это имеет важное адаптационное значение, поскольку такая быстрая мобилизация неспецифической иммунной защиты способна значительно снизить риск инфицирования при поиске полового партнера. Таким образом, этот механизм можно рассматривать в качестве нового примера сигнальной адаптации. При этом впервые установлено, что активация мукозального иммунитета легких в ответ на половые феромоны самок зависит от генотипа самцов и более выражена у животных с преобладанием Th2-типа иммунного ответа. В отличие от воздействия таких стимуляторов неспецифической иммунной защиты как бактериальный липополисахарид, хемосигналы самок вызывают мобилизацию лейкоцитов в легкие без существенной активации провоспалительных цитокинов (ИЛ-1β) и ГГНС.

Впервые были получены данные о влиянии генотипа животных на иммунный ответ на наночастицы. Нами было показано, что самцы мышей с преобладанием Th1- или Th2-типов иммунного ответа проявляют различные паттерны реагирования на интраназальную аппликацию наночастиц оксида кремния. Так, у мышей линии BALB/c введение наночастиц вызывало активацию мукозального иммунитета легких, тогда как у мышей линии C57Bl повышалось количество лейкоцитов в крови. Эта реакция сопровождалась активацией ГГНС у особей обеих линий.
Теоритическая и практическая значимость исследования

Полученные данные о влиянии запаховых сигналов на иммуно-эндокринную функцию самцов могут найти применение при регламентации норм содержания лабораторных животных, используемых в иммунологических исследованиях, а также при профилактике респираторных инфекций у сельскохозяйственных животных. Данные о том, что животные с разным генотипом могут проявлять различную реакцию на неинфекционные стимулы, могут быть использованы при выборе объекта для исследований в нанотоксикологии. Кроме того, эти данные будут полезны при разработке критериев индивидуальной восприимчивости рабочих к негативному влиянию наноразмерных аэрозолей производственной среды.

Апробация работы

Материалы диссертации докладывались на отчетной сессии ИЦиГ СО РАН (Новосибирск, 2010).
ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ

Эпителий легких, выполняя свою основную функцию - газообмена, находится в постоянном контакте с атмосферным воздухом, который содержит огромное разнообразие патогенных и непатогенных микроорганизмов, а также микро- и наноразмерных частиц органического или неорганического происхождения. При этом для эффективного газообмена эпителий легких должен представлять собой минимальный барьер для свободной диффузии газов. Эти функциональные особенности исключают формирование таких защитных механизмов, как образование на поверхности альвеол непроницаемого барьера, подобно тому, что формируется на коже, или постоянную выработку плотного слоя слизи, как в пищеварительном тракте.

Эволюция в воздушной среде, насыщенной патогенными и непатогенными микроорганизмами, привела к формированию защитной системы, способной распознавать потенциально опасные агенты, которые поступают в верхние дыхательные пути. Так, у высших позвоночных сформировалось две взаимодействующие защитные системы: неспецифическое и специфическое звенья иммунной защиты (Medzhitov, 2007). Неспецифическая иммунная защита всегда находится в активном состоянии и немедленно готова распознать и инактивировать любой проникший в организм патоген, независимо от его специфичности. Специфический иммунный ответ основан на способности лимфоцитов синтезировать высокоспецифичные антитела к определенным пептидным последовательностям патогенов. Эти антитела опсонизируют микробы и вирусы и способствуют их уничтожению лейкоцитами. Цитокины и факторы роста, синтезируемые макрофагами и дендритными клетками неспецифической иммунной системы, запускают процессы специфического иммунного ответа. Кроме того, специфическая иммунная система обладает свойством памяти, отсутствующим у неспецифического звена. Вместе неспецифическое и специфическое звенья
иммунной системы эффективно защищают организм от огромного разнообразия микробов и их продуктов, с которыми ему (организму) приходится постоянно сталкиваться в процессе своей жизнедеятельности. Еще одним средовым фактором, интерес к которому резко вырос в связи с развитием нанотехнологий, являются субмикронные и наноразмерные аэрозоли, которые также взаимодействуют в слизистых оболочках альвеол с иммунокомпетентными клетками (Roursgaard et al., 2010; Zolnik et al., 2010; Panas et al., 2013).

Изучению защитных механизмов мукозального слоя легких посвящено значительное число работ, анализ которых представлен в данном обзоре литературы в следующих разделах:

- Механизмы неспецифической иммунной защиты в легких;
- Иммунный ответ на бактериальный липополисахарид;
- Эндохринный ответ на активацию иммунитета;
- Различия в реакции мукозального иммунитета на инфекционные стимулы у мышей с преобладанием Th1- и Th2-типов иммунного ответа;
- Социальные факторы модуляции иммунных реакций;
- Реакция мукозального иммунитета легких на наночастицы.

1.1. Механизмы неспецифической иммунной защиты в легких

Неспецифическое звено иммунной защиты в легких представлено физическими барьерами и комплексом гуморальных и клеточных механизмов (Diamond et al., 2000; Travis, 2001; Knowles and Boucher, 2002; Martin and Frevert, 2005; Rogan et al., 2006). Так, крупные частицы, вдыхаемые с потоком воздуха, осаждаются в области носоглотки и миндалин. Более мелкие частицы, которые проникли далее в воздухоносные пути, осаждаются на их поверхности, покрытой реснитчатым эпителием, где они попадают на мукозальный слой и выводятся из легких восходящим потоком слизи, движимой ресничками.
мукоцилиарной транспортной системы. И если более мелкие частицы, такие как бактерии или вирусы, все же проникают в альвеолярное пространство, там они взаимодействуют с растворимыми компонентами и лейкоцитами, содержащимися в мукозальном слое.

Мукозальный слой полностью выстилает эпителий легких и представляет собой вязкоупругий гель сложного состава, содержащий около 200 различных белков, включая антимикробные белки (лизоцим, лактоферрин и дефензины), цитокины и антиоксидантные белки (Nicholas et al., 2006). Растворимые компоненты мукозального слоя играют важнейшую роль в неспецифической иммунной защите легких. Так, лизоцим гидролизует пептидогликаны клеточных стенок бактерий (Callewaert and Michiels, 2010), лактоферрин связывает железо, лишая тем самым бактерии необходимого для их жизнедеятельности микроэлемента (Farnaud and Evans, 2003), иммуноглобулины A и G, белки комплемента и сурфактантные белки служат дополнительными опсонинами микробов.

Кроме растворимых компонентов, в мукозальном слое находятся имmunокомпетентные клетки, в норме в основном представленные альвеолярными макрофагами. Лимфоциты и нейтрофилы присутствуют в значительно меньшем количестве. Как известно, лейкоциты эксперссируют разнообразные рецепторы, которые обеспечивают неспецифическое иммунное распознавание компонентов микроорганизмов – липополисахаридов, протеогликанов, флагеллинов и др., объединяемых общим понятием патоген-ассоциированные молекулярные паттерны (ПАМП). Среди таких рецепторов особую роль играет семейство так называемых Toll-like рецепторов (TLR).

Первоначально Toll-белок был обнаружен у дрозофилы, как фактор формирования дорзовентральной оси в развивающейся зиготе (Anderson et al., 1985), а позже было показано, что он участвует в борьбе с грибковыми инфекциями (Lemaitre et al., 1996). Меджитов и коллеги обнаружили у человека гомологичный Toll-подобный ген, кодирующий TLR4 (Medzhitov et al., 1997).
Роль TLRs в неспецифическом иммунитете была впервые показана на мышах линии C3H/HeJ, для которых характерна резистентность к бактериальному липополисахариду, и при этом высокая восприимчивость к инфекциям грамотрицательными бактериями. Было показано, что у этих мышей имеется мутация в гене, кодирующем TLR4, гомологичном Toll-белку дрозофилы (Poltorak et al., 1998). С момента этого открытия было описано, по меньшей мере, 11 различных TLRs у человека и 13 у мышей. Все они играют важную роль в неспецифическом иммунном ответе, распознавая различные ПАМП, такие как липопротеины (TLR1,-2 и -6) (Aliprantis et al., 1998; Takeuchi et al., 2001, 2002), ЛПС (TLR4) (Poltorak et al., 1998), флагеллин (TLR5) (Hayashi et al., 2001), неметилированные участки CpG ДНК (TLR9) (Hemmi et al., 2000) и РНК (TLR7 и -8) (Alexopoulou et al, 2001; Diebold et al., 2004; Heil et al., 2004). Природа лиганда для TLR10 пока неизвестна, тогда как TLR11 распознает уропатогенные E. coli (Zhang et al., 2004) и порфирино-подобные молекулы Toxoplasma (Yarovinsky et al., 2005). TLR1, -2, -4, -5 и -6 локализованы на плазматической мембране клетки, тогда как, TLR7, -8 и -9 на эндоплазматическом ретикулуме (Kim et al., 2008).

1.2. Иммунный ответ на бактериальный липополисахарид

Бактериальный липополисахарид (ЛПС) является основным компонентом клеточной стенки грамотрицательных бактерий. Хотя сам по себе ЛПС не является токсическим агентом, его попадание в организм вызывает иммунный ответ, сопровождающийся сложным каскадом иммунно-нейронарных реакций, которые, с одной стороны, обеспечивают неспецифическую иммунную защиту, а, с другой стороны, приводят к активации механизмов стресса и к развитию синдрома болезненного поведения (Zacharowski et al., 2006).
Ответ на бактериальный ЛПС запускается через взаимодействие с TLR4. Попадая в организм, ЛПС связывается с липополисахарид-связывающим белком (ЛСБ), синтезирующимся в печени, который циркулирует в плазме крови в относительно высоких концентрациях (мкг/мл) и присутствует в тканевых жидкостях. ЛСБ с высокой аффинностью связывается с ЛПС, образуя стабильный ЛСБ: ЛПС комплекс, который вызывает мощную активацию клеток (Schumann et al., 1990). Для связывания ЛПС с TLR4, помимо ЛСБ, необходимы еще 2 дополнительных белка – CD14 и MD-2. ЛПС-связывающий белок способствует переносу ЛПС на мембраносвязанную молекулу CD14 (Wright et al., 1990; Tobias et al., 1995). CD14, в свою очередь, представляет молекулу ЛПС ее сигнальному рецептору TLR4, ассоциированному с мембраносвязанной молекулой MD-2. В ходе воспалительного ответа TLR4 инициирует в резидентных тканевых иммунных клетках сигнальный каскад, приводящий к активации транскрипционных факторов, таких как NF-κB и IRF-3, которые запускают синтез провоспалительных цитокинов. К числу ключевых провоспалительных цитокинов, координирующих локальный и системный иммунный ответ, относятся фактор некроза опухолей-α (ФНО-α), интерлейкин-1β (ИЛ-1β), и интерлейкин-6 (ИЛ-6), главными продуцентами которых являются активированные моноциты и макрофаги.

ФНО-α обычно синтезируется первым, затем появляются ИЛ-1β и ИЛ-6 (Akira et al., 1990). Все три цитокина усиливают собственную секрецию клетками, продуцирующими их. Также ФНО-α и ИЛ-1β стимулируют секрецию ИЛ-6, тогда как ИЛ-6 подавляет секрецию ФНО-α и ИЛ-1β, таким образом принимая участие в контроле воспалительного процесса (Givalous et al., 1994; Chrousos, 1995).

Провоспалительные цитокины обладают широким спектром биологических эффектов и запускают каскад клеточных взаимодействий и реакций, приводящий к синтезу других цитокинов, хемокинов, а также других медиаторов воспаления, что приводит к развитию воспалительной реакции.
Так, провоспалительные цитокины вызывают активацию эндотелия (Pober, 1987), приводящую к вазодилатации и повышению проницаемости кровеносных сосудов, а также повышению экспрессии молекул межклеточной адгезии клетками эндотелия кровеносных сосудов и лейкоцитами, что приводит к направленной мобилизации иммуннокомпетентных клеток и белков плазмы крови в очаг воспаления. Это приводит к формированию воспалительного клеточного инфильтрата. В свою очередь, клетки воспалительного инфильтрата являются продуцентами цитокинов, что обуславливает самоподдержание локальной воспалительной реакции. Генерализация воспалительного процесса приводит к существенному повышению содержания провоспалительных цитокинов в крови и развитию системных эффектов цитокинов (Turnbull and Rivier, 1997).

Помимо привлечения иммуннокомпетентных клеток в очаг воспаления, еще одной важной функцией цитокинов является усиление фагоцитарной и микробицидной активностей. Так, ИЛ-1 и ФНО существенно повышают фагоцитарную активность макрофагов и нейтрофилов (Stendahl et al., 1984; Klebanoff et al. 1986), а ИЛ-6 усиливает их микробицидные свойства, индуцируя синтез ферментов, участвующих в образовании супероксидных форм кислорода, оксида азота и гипохлорной кислоты, которые обладают выраженными антимикробными свойствами.

Кроме того, на системном уровне ИЛ-1β и ИЛ-6 запускают синтез гепатоцитами белков острой фазы (коллектины и пентаксины) (Koj et al., 1988). Эти белки активируют систему комплемента и опсонизируют патогены, облегчая их фагоцитоз макрофагами и нейтрофилами. Таким образом, провоспалительные цитокины на местном и системном уровнях запускают и контролируют адекватный иммунный ответ на проникновение патогена.

Весь этот каскад воспалительных реакций запускается через взаимодействие ЛПС с TLR4, экспрессированным главным образом на иммуннокомпетентных клетках. Вместе с тем, недавние исследования
показали, что TLR4 экспрессируется также и в клетках эпителиального происхождения. Так, показано, что TLR4 экспрессируется на эпителиальных клетках как тонкого (Cario et al., 2002; Hornef et al., 2002), так и толстого (Uehara et al., 2001) кишечника, почек (Wolfs et al., 2002) и десен (Uehara et al., 2001). В легких TLR4 экспрессируется в эпителиальных клетках альвеол и бронхов, а также в клетках эндотелия кровеносных сосудов (Andonegui et al, 2003; Guillot et al., 2004; Sha et al., 2004). Показано, что эпителиальные клетки легких экспрессируют мРНК всех известных Toll-like рецепторов, взаимодействие которых с лигандами вызывает активацию эпителиальных клеток, что приводит к синтезу хемокинов, цитокинов и других молекул иммунной защиты, включая белки острой фазы воспаления и системы комплемента. Более того, активация клеток эпителия приводит к еще большему усилию экспрессии рецепторов. Таким образом, эпителий легких может участвовать в местном иммунном ответе через секрецию цитокинов и антимикробных белков.

1.3. Эндокринный ответ на активацию иммунитета

Еще Ганс Селье обратил внимание на то, что первые проявления разнообразных инфекций совершенно одинаковы (повышение температуры, общая слабость, снижение аппетита) и лишь спустя некоторое время появляются симптомы, специфические для того или иного заболевания. Это свидетельствует о развитии комплекса неспецифических защитно-приспособительных адаптивных реакций, направленных на создание устойчивости организма к любому фактору, в том числе инфекционному, обозначаемых Селье как общий адаптационный синдром или стресс-синдром. Многочисленные исследования Селье и других авторов показали, что одним из важнейших организаторов реализации общего адаптационного синдрома в
организме при различных формах стресса является гипоталамо-гипофизарно-надпочечниковая система (ГГНС) (Selye, 1936, 1955).

При инфекции выброс провоспалительных цитокинов вызывает развитие реакции острой фазы воспаления, характеризующейся повышением температуры тела, гормональными изменениями и изменениями метаболизма, такими как катаболизм белка, липолиз и глюконеогенез. Помимо этого, запуск механизмов врожденного иммунитета, приводит к формированию так называемого “синдрома болезненного поведения”, выражающегося в снижении общей активности животного, в том числе и некоторых форм социального поведения. Это, в свою очередь, имеет важное популяционное значение, так как снижает вероятность контакта зараженных особей со здоровыми (Hart et al., 1994; Moshkin et al., 2000; Aubert, 2005).

Вся поступающая сенсорная информация о состоянии организма интегрируется в гипоталамусе, центральном регулирующем звене ГГНС. Первичным звеном этой системы являются нейроэндокринные нейроны паравентрикулярного ядра гипоталамуса, синтезирующие кортикотропин-рилизинг гормон (КРГ), который является основным физиологическим регулятором секреции адренокортикотропного гормона (АКТГ) надпочечниками. Аксоны синтезирующих КРГ нейронов проецируются в наружную зону срединного возвышения, откуда КРГ поступает в портальный кровоток, достигая клеток аденогипофиза. Здесь КРГ взаимодействует со специфическими рецепторами на поверхности кортикотропных клеток, стимулируя синтез проопиомеланокортина (ПОМК) и его деривата – АКТГ, а также других ПОМК-пептидов (Turnbull and Rivier, 1997). АКТГ в свою очередь, попадая в кровоток, запускает синтез глюкокортикоидов корой надпочечников. Для человека основным глюкокортикоидом является кортизол, тогда как у мышей и крыс основной продукт коры надпочечников – это кортикостерон. При этом, глюкокортикоиды способны по принципу
отрицательной обратной связи подавлять синтез КРГ в гипоталамусе и ПОМК-пептидов в гипофизе (Keller-Wood and Dallman, 1984; Young et al., 1986).

Как известно, ЛПС является одним из эффективных индукторов неспецифического иммунного ответа. Введение очищенных препаратов бактериальных ЛПС имитирует симптомы инфекции грамотрицательными бактериями без истинного заражения животного. Как следствие, инъекция ЛПС лабораторным животным является наиболее распространенной и подходящей моделью для изучения механизмов, лежащих в основе нейроэндокринного ответа на бактериальные инфекции и сепсис.

Введение ЛПС лабораторным грызунам вызывает значительное увеличение концентрации АКТГ и кортикостерона в плазме крови (Dunn, 1993; Tilders et al., 1994). Этот эффект ЛПС не является прямым фармакологическим взаимодействием ЛПС с клетками ГГНС. Показано, что инкубация гипоталамических эксплантов крыс в искусственной цереброспинальной жидкости с добавлением ЛПС не вызывает повышения концентрации КРГ in vitro при 20-ти минутном воздействии, а при 60 минутной экспозиции приводит к слабому, но статистически достоверному снижению синтеза КРГ. При этом ИЛ-1β в тех же условиях стимулирует синтез КРГ эксплантами гипоталамуса как после 20 минут, так и после 60 минут инкубации (Pozzoli et al., 1994). На уровне гипофиза ЛПС также не запускает синтеза АКТГ (Brunetti et al.,1994). Более того, у мышей линии C3H/HeJ с мутацией в гене, кодирующем TLR4, характеризующихся пониженным синтезом ИЛ-1β в ответ на стимуляцию ЛПС (Segreti et al., 1997), концентрация АКТГ и кортикостерона в плазме в ответ на интратеритонеальную инъекцию ЛПС значительно ниже, по сравнению с животными дикого типа (Dunn and Chuluyan, 1994). Это указывает на то, что нейроэндокринные эффекты ЛПС опосредованы цитокинами, синтез которых запускается при взаимодействии ЛПС с TLR4.

Среди иммунных факторов, способных активировать ГГНС в ходе инфекции, наиболее сильными являются ИЛ-1β, ФНО-α и ИЛ-6. В ряде

У млекопитающих выброс АКТГ в ответ на ИЛ-1 происходит достаточно быстро. Так, при внутривенном введении ИЛ-1 АКТГ в плазме повышается уже в течение 5-10 мин и длится около 1 часа. Интраперitoneальная инъекция ИЛ-1 характеризуется более поздним появлением АКТГ, но большей продолжительностью ответа. Тогда как при введении ИЛ-1 непосредственно в желудочки мозга латентное время появления АКТГ среднее, но ответ продолжается несколько часов (обычно более 3-4 ч) (Turnbull and Rivier, 1999).

Однако не только ИЛ-1 способен активировать ГГНС. Все три цитокина, ИЛ-1β, ФНО-α и ИЛ-6 активируют ГГНС независимо; в комбинации они проявляют синергические эффекты (Sapolsky et al., 1987; Naitoh et al., 1988; Bernardini et al., 1990; Imura et al., 1991; Perlstein et al., 1993). Антитела, нейтрализующие КРГ, глюкокортикоиды и ингибиторы синтеза простаноидов блокируют активацию ГГНС цитокинами in vivo. При этом все три цитокина in vitro стимулируют секрецию АКТГ в эксплантатах гипоталамуса крыс, и этот
эффект блокируется глюкокортикоидами и ингибиторами синтеза простаноидов (Perlstein et al., 1993).

Провоспалительные цитокины и ПАМП могут достигать и воздействовать на ЦНС путем нескольких возможных механизмов: во-первых, путем пассивной диффузии в различные области, в которых отсутствует или слабо развит гемато-энцефалический барьер, такие как циркумвентрикулярные органы (ЦВО, система желудочек мозга); во-вторых, путем активного транспорта через гемато-энцефалический барьер; в-третьих, цитокины могут запускать провоспалительные сигналы в мозге через взаимодействие с рецепторами эндотелиальных и периваскулярных клеток гемато-энцефалического барьера, усиливая синтез и секрецию вторичных посредников (простагландинов и оксида азота), которые могут влиять на нейрональную активность (Serrats et al., 2010); и в-четвертых, цитокины также могут воздействовать на ЦНС через блуждающий нерв (Banks et al., 1995; Watkins et al., 1995; Merril and Murphy, 1997; Maier and Watkins, 1998; Turrin and Rivest, 2004; Correa et al., 2007).

Циркумвентрикулярные органы, по-видимому, являются основной областью проникновения в мозг многих циркулирующих воспалительных и иммунногенных агентов. В ЦВО экспрессируются TLRs (CD14, TLR2, TLR4, TLR9) и рецепторы к провоспалительным цитокинам. Вероятно, именно через ЦВО цитокины и патогены могут воздействовать на ГГНС благодаря структурному взаимодействию ЦВО и синтезирующих КРГ нейронов паравентрикулярного ядра гипоталамуса (Bette et al., 2003; Turrin and Riviest, 2004; Chakravaty and Herkerenham, 2005; Kielian, 2006; Correa et al., 2007). Однако механизм воздействия провоспалительных цитокинов на нейроэндокринную систему к настоящему времени остается все еще не до конца изученным.

Кроме того, провоспалительные цитокины ИЛ-1β, ФНО-α и ИЛ-6 могут экспрессироваться в тканях здорового или поврежденного мозга (Besedovsky et
al., 1981; Kluger, 1991; Kent et al., 1992). В частности, в ответ на периферическое введение ЛПС повышается концентрация ИЛ-1β в гипоталамусе (Harden et al., 2011; Herman et al., 2013).

Таким образом, активация ГГНС является одним из основных признаков реакции острой фазы воспаления. При этом выброс цитокинов во время острой фазы воспаления контролируется внутренними механизмами и стимуляцией ГГНС с последующим синтезом глюкокортикоидов, которые благодаря своим противовоспалительным и иммуносупрессивным свойствам уже давно используются как незаменимые терапевтические средства в борьбе со многими заболеваниями (Boumpas et al., 1993). В ходе острой воспалительной реакции, когда неспецифические механизмы иммунитета активно борются с инфекцией, активация ГГНС оказывает иммуносупрессивное действие, предотвращая тем самым чрезмерную воспалительную реакцию и вызванное ею повреждение тканей собственного организма. Так, глюкокортикоиды угнетают циркуляцию лейкоцитов в крови (Pitzalis et al., 1997), подавляют хемотаксис и миграцию нейтрофилов и моноцитов, уменьшают число циркулирующих моноцитов (Webster et al., 2002), подавляют пролиферацию и снижают активность цитотоксических Т-лимфоцитов (Bonneau et al., 1998). Кроме того, глюкокортикоиды подавляют дифференцировку дендритных клеток и экспрессию молекул главного комплекса гистосовместимости (Matyszak et al., 2000; Woltman et al., 2002). Высокий уровень глюкокортикоидов в плазме регулирует дальнейший выброс провоспалительных цитокинов и других медиаторов воспаления, подавляя NF-κB сигнальный путь (Webster et al., 2002). При этом глюкокортикоиды усиливают синтез таких противовоспалительных цитокинов, как ИЛ-10, ИЛ-4 и трансформирующий ростовой фактор-β (ТРФ-β), способствуя тем самым переключению иммунного баланса в сторону Th2-типа иммунного ответа, что предотвращает чрезмерное развитие Th1-типа иммунного ответа (Vivero-Paredes et al., 2006; Pace et al, 2007; Elenkov, 2008). Секреция глюкокортикоидов, таким образом, выступает как ключевой
регуляторный механизм контроля и ограничения механизмов неспецифической иммунной защиты от различных стимулов, в том числе инфекционных (Chrosous, 1995; Calcagni and Elenkov, 2006; Sternberg, 2006).

Итак, цитокиновый ответ направлен на защиту организма от распространения поражения (воспаления или инфекции), а активация ГГНС выступает в качестве быстрого ответа, направленного, в том числе, на ограничение негативных последствий иммунного ответа.

1.4. Различия в реакции мукоэзального иммунитета на инфекционные стимулы у мышей с преобладанием Th1- и Th2-типов иммунного ответа.

В клиническом исходе большинства инфекционных заболеваний и устойчивости к ним ключевую роль играет Th1/Th2 баланс иммунного ответа (Infante-Duarte and Kamradt, 1999). В свою очередь баланс Th1/Th2 в значительной мере предопределён генотипом (Hsieh et al., 1995; Stewart et al., 2002). Как известно, T-клетки мышей линии C57Bl продуцируют в основном Th1-цитокины, синтезируя высокие концентрации IFN-γ и низкие концентрации IL-4, тогда как T-клетки мышей линии BALB/c продуцируют Th2-тип цитокинов, синтезируя IFN-γ в низкой концентрации, а IL-4 в высокой концентрации (Mills et al., 2000).

Предполагается, что различия в цитокиновом ответе обеспечивают большую устойчивость мышей линии C57Bl к таким патогенам как Leishmania major (Scott et al., 1988; Heinzel et al., 1989), L. mexicana (Rosas et al., 2005), в том числе и респираторным Mycobacterium tuberculosis (Paula et al., 2010) и Burkholderia pseudomallei (West et al., 2012), по сравнению с мышами линии BALB/c. В свою очередь, мыши линии BALB/c способны подавлять развитие грибковой инфекции Cryptococcus neoformans в легких, которая вызывает
хроническую респираторную патологию у C57Bl (Hoag et al., 1995; Huffnagle et al., 1998; Chen et al., 2008а).

Таким образом, мыши C57Bl и BALB/c относятся к линиям мышей с преобладанием Th1- и Th2-типов иммунного ответа, соответственно. Кроме того, известно, что макрофаги линий мышей с преобладанием Th1 обладают более высокой фагоцитарной активностью, и, в отличие от макрофагов мышей с преобладанием Th2, синтезируют NO и лизосомальные ферменты - эффекторные молекулы уничтожения бактерий (Mills et al., 2000; Su et al., 2001; Watanabe et al., 2004).

Помимо различной устойчивости к инфекциям, мыши линий с преобладанием Th1- и Th2-типов иммунного ответа по-разному реагируют на стимуляторы неспецифического иммунного ответа. Так, например, показано, что количество нейтрофилов и лимфоцитов в БАЛ после интраназального введения ЛПС у мышей BALB/c в 6 раз выше, чем у мышей C57Bl (Corteling et al., 2002). Такие межлинейные различия можно объяснить тем, что Th2-цитокины, в частности IL-4 и IL-13, индуцируют экспрессию селективных хемокинов, таких как MDC (CCL22), TARK (CCL17), AMAC1 (CCL18), MCP1 (CCL2), которые усиливают направленную миграцию лейкоцитов из кровотока в очаг воспаления, тогда как Th1-цитокины, такие как IFNγ и IL-12, подавляют их продукцию (Bonecchi et al., 1998; Iellem et al., 2000). Вместе с тем, известно, что макрофаги, полученные от мышей линий с преобладанием Th1- и Th2-типов иммунного ответа разнонаправленно реагируют на стимуляцию ЛПС, MALP-2 (macrophage-activating lipopeptide-2, синтетический лиганд TLR-2) и IFNγ. Так, макрофаги, полученные от Th1 линий мышей в ответ на эти стимулы легче активируются, продуцируя NO и лизосомальные ферменты, и проявляют более высокую фагоцитарную активность, по сравнению с макрофагами Th2 линий мышей (Mills et al., 2000; Su et al., 2001; Kuroda et al., 2002, 2003; Watanabe et al., 2004). Макрофаги Th2 линий мышей не только не синтезируют NO, а напротив, усиливают метаболизм аргинина, являющегося субстратом
NO-синтаз, до орнитина (Munder et al., 1999), который, в свою очередь, может стимулировать клеточное деление, тогда как NO напротив – подавляет деление клеток (Wu and Morris, 1998). Таким образом, макрофаги сами по себе могут определять поляризацию иммунного ответа при инфекции.

1.5. Модуляции иммунных реакций социальными сигналами

Хемосигналы рецептивных самок являются важнейшим стимулом к запуску репродуктивного поведения самцов. Они обеспечивают формирование половой мотивации и активизируют физиологические системы, лежащие в основе воспроизводства (Macrides et al., 1975; Bronson 1979; Amstislavskaya and Popova, 2004). Так, показано, что запах половых самок увеличивает концентрацию андрогенов в крови самцов (Macrides et al., 1975; Bronson 1979; Amstislavskaya and Popova, 2004; Nyby, 2008), усиливает сперматогенез и развитие дополнительных половых желез (Koyama and Kamimura, 2000). Хемосигналы самцов, в свою очередь, вызывают у самок ряд эндокринных эффектов. Предоставление самкам запаха мочи самцов ускоряет половое созревание (Vandenbergh, 1983; Kaneko et al., 1980), синхронизирует эстральный цикл и ускоряет наступление эструса в группах самок (Whitten, 1958). Кроме того, феномен, хорошо известный как эффект Брюс (выкидыш при подсадке к беременной самке незнакомого самца), также основывается на действии феромонов (Bruce, 1963).

До недавнего времени исследования роли половых хемосигналов были сконцентрированы в основном на изучении их эффектов на генеративную
систему. Вместе с тем, репродуктивное поведение многих видов грызунов сопряжено с увеличением инфекционных рисков. К ним относятся не только инфекции передающиеся половым путем (Altizer et al., 2003), но и риски заражения при поиске полового партнера и конкуренции с соперником. Эти формы поведения сопряжены с риском заражения возбудителями, передающимися через поврежденные покровы, а также воздухо-капельным путем, поскольку фекальные и мочевые метки, служащие ориентирами при ольфакторном поиске, обильно населены микроорганизмами, в том числе и патогенными (Baker, 1998; Lanyon et al., 2007). Высокая вероятность обмена возбудителями также имеет место при назо-назальном и назо-генитальном обнюхивании, которые входят в ритуал полового поведения многих видов грызунов (Hull et al., 2006; Hull and Dominguez, 2007). Борьба с конкурентами также чревата заражением через открытые раны и укусы, нанесенные инфицированными соперниками (Hinson et al, 2004).

Активируя генеративную систему самцов, хемосигналы самок тем самым усиливают агрессивное поведение самцов, направленное на получение доступа к потенциальным брачным партнерам. Агрессивность самцов обычно положительно коррелирует с их запаховой привлекательностью для самок (Gerlinskaya et al., 1995). В репродуктивном успехе самцов большую роль играет их конкурентоспособность в борьбе за территорию. При этом социальные взаимодействия, направленные на установление и поддержание статуса в социальной иерархии, являются источником стресса. Так, у большой песчанки в годы с высокой численностью популяции наблюдался более высокий уровень кортикостерона и более низкий уровень тестостерона в крови, по сравнению с годами, когда численность популяции была низкой. Это предполагает, что стресс более выражен при высокой численности популяции в результате увеличения числа социальных контактов (Rogovin et al., 2003). У некоторых видов установление и поддержание высокого социального ранга
может быть даже более важным фактором стресса, чем доминирование как таковое (Kotrschal et al., 1998; Sapolsky, 1992).

В ряде работ была установлена сопряженная изменчивость поведения, концентрации кортикоцертерона и тестостерона в плазме и иммунного ответа в зависимости от социального статуса самца (Barnard et al., 1993, 1994, 1996, 1998). Так, в исследовании, проведенном на аутбредных мышах линии ICR, было установлено, что взаимосвязь между агрессивностью и иммунореактивностью зависит от социального окружения. При содержании самцов в группах (по 5 в клетке) агрессивные самцы доминировали и показывали более высокий иммунный ответ на эритроциты барана, по сравнению с субординантными особями (Лохмиллер и Мошкин, 1999). В другом исследовании самцов из групп регулярно изолировали друг от друга на 90 минут, и затем возвращали в общую клетку. После двух месяцев воздействия исследованный гуморальный иммунный ответ у доминантных особей был значительно ниже по сравнению с субординантными, а агрессивность доминантов в стабильных группах была ниже, по сравнению с агрессивностью самцов в группах, подвергавшихся изоляции. Вероятно, возросшая агрессивность в нестабильных группах была связана с восстановлением иерархического статуса после изоляции от конспецификов. Таким образом, более высокая «стоимость» установления доминирующей позиции в социальной иерархии может приводить к снижению иммунного ответа (Moshkin et al., 2001). Это предположение подкрепляют результаты, полученные на диких видах грызунов. В популяциях рыжей полевки и полевой мыши агрессивные самцы проявляют более низкий гуморальный иммунный ответ на инъекцию эритроцитов барана, по сравнению с неагрессивными самцами (Лохмиллер и Мошкин, 1999; Мак, 2002).

Таким образом, хемосигналы самок активируют эндокринную функцию гонад, запуская ряд поведенческих механизмов, сопряженных с повышением инфекционных рисков, и могут повлиять на иммунный статус самцов. Поэтому
в ряде эколого-эволюционных работ ставится вопрос о влиянии репродуктивных сигналов самок на механизмы иммунной защиты. В этой связи рассматриваются две точки зрения. Во-первых, согласно принципу компромиссного распределения внутренних ресурсов между конкурирующими потребностями организма (trade-off) феромональная активация репродуктивной функции может приводить к подавлению иммунной защиты (Folstad and Karter, 1992; Moshkin et al., 2000); а во-вторых, исходя из возможной адаптивной роли половых хемосигналов, высказывается предположение о перераспределении защитных функций организма в пользу механизмов, обеспечивающих эффективное противодействие интервенции инфекционных агентов через поврежденные покровы и респираторную систему (Литвинова и др., 2009; Litvinova et al., 2009). То есть усиливается защита от заражения, связанного с видоспецифическим ритуалом полового поведения, включая поиск полового партнера (Barnard et al., 1997; Braude et al., 1999).

Первое предположение подкрепляют эксперименты на лабораторных мышах, в которых было показано, что даже кратковременная, в пределах 5 суток, экспозиция самцов лабораторных мышей запахом самок снижает специфический гуморальный иммунный ответ на введение эритроцитов барана и пролиферативную реакцию В-клеток селезенки на добавление в культуральную среду В-специфического митогена (Суринов и др., 2001; Мошкин и др., 2004; Moshkin et al., 2001). При этом центральное место в механизмах реагирования самцов на запаховые сигналы самок отводится активации эндокринной функции гонад, поскольку андрогены обладают иммунносупрессивными свойствами. Они усиливают синтез ИЛ-10 и подавляют продукцию провоспалительных цитокинов, что приводит к подавлению иммунных реакций на чужеродные антигены (Cutolo et al., 2002). Это предположение подтверждается тем, что кастрация полностью нивелирует супрессивное влияние хемосигналов самок на гуморальный иммунный ответ самцов (Мошкин и др., 2004).
Однако подавление специфического иммунитета не исключает возможности усиления неспецифической иммунной защиты. Одним из первых доказательств адаптивного перераспределения защитных механизмов под действием хемосигналов самок было то, что на фоне подавления гуморального иммунного ответа была отмечена более высокая выживаемость самцов при ранениях, полученных в результате межсамцовой агрессии, по сравнению с таковой у особей, изолированных от запаха самок. При этом у самцов, экспонированных запахом самок, суммарное количество актов агрессивного и субмиссивного поведения было достоверно выше, а повреждения на шкурках в результате укусов были более выраженными, по сравнению с изолированными от запаха самок самцами (Мошкин и др., 2004). Одно из возможных объяснений данного феномена может быть связано с тем, что острый стресс (1-4 часа) в отличие от хронического может значительно усиливать иммунные функции в кожных покровах (Dhabhar and McEwen, 1996, 1997, 1999). Предполагается, что острый стресс усиливает иммунологический “надзор”, индуцируя циркуляцию лейкоцитов в органах, контактирующих с окружающей средой, таких как кожа, пищеварительный и урогенитальный тракты. Таким образом, “не зная” точно какой орган может подвергнуться инфекционной инвазии, стрессовая реакция индуцирует селективное удержание лейкоцитов в этих компартментах (кожа, пищеварительный или урогенитальный тракты). И если стрессирующее воздействие будет сопровождаться иммунной стимуляцией (ранение или инфекция), организм, подвергшийся стрессу, будет готов проявить более мощный ответ за счет возросшего числа лейкоцитов в тех органах, которые более всего подвержены воздействию окружающей среды (Dhabhar et al., 1999). Кроме того, перераспределение защитных механизмов в пользу усиления неспецифического иммунного ответа в результате воздействия хемосигналов самок может еще больше усиливать этот эффект, компенсируя тем самым влияние усиления межсамцовой агрессии, приводящей к значительным повреждениям покровов.
Как уже было отмечено ранее, половое поведение грызунов связано с увеличением рисков инфицирования в результате ольфакторного поиска и обнюхивания полового партнера. При этом хемосигналы самок выступают в качестве своего рода предиктора увеличения инфекционных рисков. Наиболее значимой системой в защите организма от респираторных инфекций является мукозальный иммунитет легких, представленный рядом механических, клеточных и гуморальных механизмов (см. главу Механизмы неспецифической иммунной защиты в легких).

Недавние исследования нашей лаборатории показали, что семидневная экспозиция самцов лабораторных мышей аутбreds линии ICR приводила к интервенции лейкоцитов в легкие, что проявлялось в существенном увеличении количества мелких скоплений иммунокомпетентных клеток в перибронхиальных областях, видимых на гистологических срезах легких (Литвинова и др., 2009). Более того, иммунно-эндокринная реакция в ответ на интраназальное введение ЛПС была значительно выше у самцов, экспонированных запахом самок. В частности, у таких самцов отмечали более выраженную интервенцию лейкоцитов в легкие, больший прирост содержания ИЛ-1β в гипоталамусе и кортикостерона в плазме крови (Литвинова и др., 2009).

Миграция лейкоцитов в легкие в ответ на хемосигналы самок была подтверждена в исследовании на мышах линии BALB/c. Так, под влиянием хемосигналов самок у самцов мышей возрастало количество лейкоцитов в бронхоальвеолярных смывах, в частности, клеток неспецифического иммунитета (эозинофилов, нейтрофилов и макрофагов). В крови общее количество лейкоцитов было одинаковым в обеих группах самцов, а число моноцитов (предшественников тканевых макрофагов) при этом даже снижалось (Litvinova et al., 2009).

В совокупности эти данные полностью укладываются в представления, постулируемые гипотезами адаптивного перераспределения защитных функций
организма в ответ на социальные стимулы, действие которых сочетается с ростом инфекционных рисков (Barnard et al., 1997; Dhabhar and McEwen, 1999; Dhabhar, 2003). Так, запах половозрелых самок как сигнал к действиям, сопряженным с риском респираторного заражения, должен вызывать мобилизацию лейкоцитов в респираторный тракт, что является одним из наиболее эффективных механизмов защиты от инфекции при ольфакторном поиске партнеров и оценке их репродуктивного статуса (Литвинова и др., 2009). В подтверждение этой гипотезы было показано, что индуцированное запахом самок адаптивное перераспределение иммунной защиты в пользу неспецифических механизмов, направленных на защиту организма от риска респираторных инфекций, действительно делает самцов мышей более устойчивыми к экспериментальной респираторной вирусной инфекции (Litvinova et al., 2010).

Таким образом, активация неспецифической иммунной защиты в легких самцов в ответ на хемосигналы самок может рассматриваться как механизм сигнальной адаптации, при этом запах самок является внешним сигналом к запуску мобилизации лейкоцитов в легкие, что является одним из механизмов защиты от потенциальных респираторных инфекций, обусловленных ольфакторным поиском и оценкой репродуктивного статуса полового партнера.

1.6. Реакция мукозального иммунитета легких на наночастицы

Среди неинфекционных стимулов для мукозального иммунитета легких заметное место отводится наночастицам, интерес к исследованию токсикологических свойств которых значительно возрос за последнее десятилетие в связи с возрастающим производством и использованием наноматериалов. Наночастицы определяют как частицы, размером менее 100 нм хотя бы в одном из измерений (ISO, 2007). Наночастицы обладают различными химическими, физическими, магнитными и электрическими...
свойствами в зависимости от материала, размера, формы, агрегации, поверхностного заряда и т.д. Благодаря своим свойствам наночастицы приобрели широкое практическое применение в различных областях, в частности, наночастицы используют в качестве различных наполнителей, полупроводников, катализаторов, а так же при производстве косметики и микроэлектроники. Поэтому они производятся в огромных количествах и приобретают статус реальных загрязнителей окружающей среды. Помимо этого наночастицы могут поступать в атмосферу из естественных источников: в результате природных пожаров, извержений вулканов и пыльных бурь. В медицинской практике наночастицы все чаще применяют как в качестве самостоятельных терапевтических агентов, так и в качестве носителей определенных лекарственных препаратов, а также в качестве контрастов в томографической диагностике (Chaudhry et al., 2008; Farokhzad and Langer, 2009; Cho et al., 2010). При этом респираторная система рассматривается в качестве одной из основных порtalльных систем для поступления наночастиц в организм. В связи с этим большое число работ в области нанотоксикологии посвящено исследованию влияния на организм наночастиц, поступающих через респираторную систему.

Множество исследований выявило различные токсикологические эффекты наночастиц, зависящие от исследуемого органа и материала, из которого сделаны наночастицы. Хотя некоторые эффекты схожи для любых наночастиц. Так, независимо от химического состава и размера, наночастицы сами по себе могут вызывать иммунный ответ и влиять на другие системы органов. При этом, наноразмерные частицы обладают большей способностью вызывать воспаление, по сравнению с микроразмерными частицами из того же материала. В ряде эпидемиологических исследований было выявлено неблагоприятное влияние присутствия наночастиц природного происхождения в атмосфере на состояние респираторной и сердечно-сосудистой систем, что приводит к росту заболеваемости и смертности у подверженной риску части

Проникновение и распространение по организму наночастиц значительно отличается от такового частиц большего размера. Благодаря своим аэродинамическим свойствам, наночастицы значительно легче проникают и накапливаются в дистальных отелях легких. Так было показано, что 50% вдыхаемых наночастиц (20 нм) могут достигать альвеол, где они накапливаются и удаляются оттуда значительно хуже, чем более крупные частицы (International Commission on Radiological Protection, 1994). В другом исследовании было показано, что 70% экспонированных наночастиц (<80 нм) присутствовало в альвеолах через 24 часа после экспозиции, тогда как частиц размером >500 нм было только 20% (Oberdoster et al., 2005). Что свидетельствует о том, что частицы субмикронного размера легче могут быть захвачены и утилизированы макрофагами. Таким образом, наночастицы могут вызывать в легких хроническое воспаление и фиброзы.

Осевшие частицы могут преодолевать альвеолярно-капиллярный барьер и проникать в кровеносные сосуды. Так, было показано, что уже через 5 минут после интратрахеального введения наночастицы (<80 нм) проникают в кровеносные сосуды (Nemmar et al., 2001). После этого наночастицы могут переноситься кровотоком в другие органы, где могут накапливаться и влиять на функционирование этих органов.

Оксид кремния (SiO₂) является одним из самых распространенных соединений в земной коре. При этом вдыхание частиц оксида кремния вызывает ряд токсикологических эффектов. Например, кристаллические частицы оксида кремния (в основном кварца) могут вызывать силикоз,
хронический бронхит, хроническое обструктивное заболевание легких, а так же может вызывать развитие рака легких (Donaldson et al., 2002; Merget et al., 2002).

Проведенный нами анализ данных литературы показывает, что мукозальный слой легких является своего рода ареной, на которой сталкиваются внешние инфекционные и неинфекционные стимулы с механизмами неспецифической и специфической иммунной защиты. При этом появляются доказательства не только прямого защитного реагирования мукозального иммунитета на попадание патогенов в верхние дыхательные пути, но и реагирование в ответ на сигналы, сопряжённые с повышением инфекционного риска, например на половые феромоны. Но все иммунологические эффекты половых феромонов были получены при многочасовой экспозиции запаховыми стимулами, тогда как защитная реакция на сигналы о повышении инфекционного риска будет иметь реальное адаптивное значение только при ее развитии в короткое время. Это обстоятельство предопределило направление наших исследований, в которых были проанализированы изменения мукозального иммунитета легких у самцов мышей через 2 часа после предъявления запаха мочи половозрелых самок. Еще одним неинфекционным фактором активации мукозального иммунитета являются наночастицы. Несмотря на то, что их провоспалительные эффекты показаны в работах многих авторов, вне поля зрения остаются генетически детерминированные особенности иммунного реагирования, в частности, не исследована роль преобладания клеточного и гуморального иммунных ответов. Поэтому в данной работе было запланировано исследовать состояние мукозального иммунитета при интраназальном введении наночастиц мышам линий C57BL и BALB/c, относящимся, согласно данным литературы, к типичным представителям линий мышей с Th1- и Th2-типами иммунного реагирования.
ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

2.1. Объект исследования и план проведения экспериментов

Работа была выполнена в 2008-2012 гг на базе Лаборатории экологической генетики млекопитающих ИЦиГ СО РАН. В ходе исследования по теме диссертационной работы было проведено пять экспериментов.

2.1.1. Эксперимент 1. Исследование нейроэндокринного ответа и реакции мукоэзального иммунитета легких самцов мышей на интраназальную аппликацию мочи самок и бактериального липполисахарида

Экспериментальные животные и условия содержания. Исследование было выполнено на мышах аутбредной линии ICR (38 самцов и 20 самок), полученных из вивария ГНЦ вирусологии и биотехнологии “Вектор” в возрасте 12 недель. Сразу после получения и до конца эксперимента самцов содержали по одному в клетке, а самок по 5 особей. В обоих случаях использовали стандартные пластиковые клетки (35×21 х 9 см). В качестве подстилочного материала использовали древесные опилки. Смену подстилки проводили раз в 5 дней. Группы самцов и самок содержали в отдельных комнатах с изолированной вентиляцией. Всех животных содержали в контролируемых условиях при температуре воздуха 23±1°C и искусственном световом режиме 14 ч – свет, 10 ч – темнота (свет выключали в 14:00 местного времени). Брикетированный корм (Чара, Сергиев Посад, Россия) и воду давали ad libitum. Исследование было начато через 2 недели после получения животных (период адаптации к условиям содержания).

Протокол эксперимента. Самцы мышей были поделены на 4 экспериментальные группы по 8-10 животных каждая. Самцам первой группы
интраназально вводили раствор ЛПС (E. coli, серотип 055:B5, Sigma-Aldrich, USA, в дозе 50 мкг/кг), самцам второй группы вводили разведенную в 5 раз мочу самок, самцам третьей группы вводили разведенную в 5 раз мочу самок с добавлением ЛПС в указанной выше дозе. Самцам контрольной группы интраназально вводили физиологический раствор. Все препараты вводили в объеме 25 мкл на животное. Процедуру проводили в интервале от 12 до 14 часов местного времени, т.е. начинали за 2 часа до выключения света.

Через 2 часа после интраназального введения препаратов животных декапитировали. Голову отсекали одним движением ножниц над гепаринизированной пластиковой пробиркой типа эппендорф и собирали в нее всю истекающую кровь. Отсеченную голову помещали на лед, снимали с нее кожу и вскрывали черепную коробку, извлекали гипоталамус, который немедленно взвешивали и помещали в охлажденную центрифужную пробирку с 0,25 мл стерильного физиологического раствора. Из тушки извлекали легкие. Правую долю легкого помещали в охлажденную центрифужную пробирку с 0,5 мл стерильного физиологического раствора. Левую долю легкого помещали в 10% нормальный формалин и хранили при комнатной температуре до проведения гистологического анализа.

Гипоталамус и левую долю легкого гомогенезировали в охлажденных пробирках с физиологическим раствором с помощью электрического диспергатора Ultra turrax на 14000 оборотах до полного равномерного разрушения тканей. Гомогенат переносили в чистую центрифужную пробирку, первую пробирку обмывали тем же объемом физиологического раствора (0,25 мл для гипоталамуса и 0,5 мл для легкого) и приливали в соответствующую пробирку. После центрифугирования при 2500 об/мин при температуре +4°C в течение 15 мин., супернатант переносили в пластиковые пробирки с крышками и хранили при -20°C до момента определения концентрации ИЛ-1β методом иммуно-ферментного анализа (ИФА).
Кровь центрифугировали при 3000 об/мин при температуре +4°C в течение 15 минут на центрифуге “Эппендорф”. Плазму переносили в пластиковые пробирки с крышками и хранили до проведения анализов при -20°C. В плазме крови определяли концентрацию кортикостерона методом РИА и концентрацию тестостерона методом ИФА.

2.1.2. Эксперимент 2. Иммуно-эндокринная реакция на интраназальное введение мочи самок и иммуногенных стимулов у самцов мышей, различающихся по типу иммунного ответа

Экспериментальные животные и условия содержания. Исследовали реакцию на интраназальное введение мочи самок, в качестве полового хемосигнала, бактериального ЛПС, в качестве положительного контроля и мочевины, как одного из основных компонентов мочи, у самцов мышей, характеризующихся преобладанием клеточного (Th1) и гуморального (Th2) иммунных ответов – линий C57Bl и BALB/c, соответственно. В работе использовали мышей инбредных линий C57Bl (20 самцов и 10 самок) и BALB/c (17 самцов и 10 самок). Животные в возрасте 8 недель были получены из вивария ИЦиГ СО РАН. В течение 2 недель до начала опытов самцов и самок содержали в изолированных комнатах с раздельной вентиляцией, самцов по одному, а самок по пять в стандартных пластиковых клетках (35×21 см 9 см высотой). В качестве подстилки использовали древесные опилки. Смену подстилки проводили каждые 5 дней. Всех животных содержали в контролируемых условиях: температура 23±1°C; световой режим 14 часов – свет, 10 часов – темнота; корм (Чара, Сергиев Посад, Россия) и вода ad libitum.

Протокол эксперимента. Самцы мышей каждой из линий были поделены на 4 группы по 4-6 особей, за исключением группы самцов линии BALB/c, экспонированных раствором мочевины, которая состояла из 2-х особей. Через 15 мин после наркотизации нембуталом в дозе 40 мг/кг
(внутрибрюшинное введение 200 мл раствора) самцам первой группы интраназально апплицировали 25 мл разведенной мочи самок, самцам из второй группы вводили интраназально 25 мл раствора бактериального липopolисахарида (ЛПС) (L-4005, E. Coli, серотип 055:B5, Sigma, в дозе 50 мкг/кг), самцам третьей группы - 25 мл раствора мочевины (0,2 мг/мл, что соответствует концентрации мочевины в моче мышей, разведенной в 5 раз). Самцам контрольной группы вводили 25 мл физиологического раствора.

Через 4 часа после введения препаратов у животных брали образцы крови из ретроорбитального синуса. На взятие пробы крови затрачивали не более двух минут, что позволяло избежать стresseирующего влияния манипуляций. Образцы крови центрифугировали (3000 об/мин, 15 мин при +4°С), плазму собирали и хранили при -20°С до определения концентрации кортикостерона методом радиоиммунного анализа (РИА) и тестостерона методом ИФА. Затем животных умерщвляли краниоцирвикальной дислокацией, обнажали трахею и вводили в нее интравенозный катетер (KD Medical GmbH Hospital Products, Germany). Образцы бронхоальвеолярного лаважа (БАЛ) собирали, промывая легкие тремя порциями физиологического раствора объемом по 1 мл. Все три порции объединяли в одной центрифужной пробирке с градуированным объемом (TPP, Switzerland). В БАЛ подсчитывали общее количество лейкоцитов и определяли концентрацию белка и пероксидазную активность в супернатанте.

2.1.3. Эксперимент 3. Иммуно-эндокринная реакция самцов на запах полового феромона (2,5-диметилпиразина) и мочи самок

Экспериментальные животные и условия содержания. Исследование выполнено в ЦКП «SPF виварий» ИЦиГ СО РАН на мышах инбредных линий BALB/c (21 самец и 10 самок) и C57Bl (19 самцов и 10 самок) в возрасте 12 недель. Животные SPF статуса были получены из Питомника лабораторных
животных «Пущино». Их содержали в индивидуально вентилируемых клетках (IVC, Tecniplast, Италия) по 5 особей, при свободном доступе к воде и гранулированному корму для мышей («Чара», Сергиев Посад), искусственным фотопериоде 12С:12T (свет выключали в 17:00 ч местного времени), температуре 22-24°C и влажности 40-50 %. В качестве подстилочного материала использовали березовые гранулы, которые были предварительно просушены, освобождены от пылевых фракций производителем (ООО «Альбион», Новосибирск). Корм и подстилочный материал поступали к животным после стерилизации автоклавированием при 121°C.

Протокол эксперимента. Самцы мышей каждой из линий были поделены на 3 группы по 6-7 особей. Самцов первой группы экспонировали запахом мочи самок, самцов второй группы – запахом 1% раствора 2,5-диметилпиразина (Sigma-Aldrich, USA), а в качестве контрольного препарата использовали физиологический раствор. Экспозицию запахом проводили по следующей схеме: в перфорированные пластиковые закрывающиеся контейнеры объемом 1,5 мл помещали ватный тампон, на который наносили 100 мкл мочи самок, либо 100 мкл раствора 2,5-диметилпиразина, либо 100 мкл физиологического раствора. Затем в центр каждой клетки с экспериментальными животными помещали по одному контейнеру, клетку закрывали и ставили обратно на стеллаж.

Через 24 часа после начала запаховой экспозиции у животных брали образцы крови из ретроорбитального синуса в гепаринизированные пробирки. Цельную кровь анализировали на автоматическом ветеринарном геманализаторе Hemascreen 18P (Hospitex diagnostics, Italy). Оставшуюся кровь центрифугировали (15 мин при 3000 об/мин), плазму для определения концентраций кортикостерона и тестостерона переносили в чистые пробирки и хранили при -70°C до проведения анализов. Затем животных умерщвляли методом краниоцервикальной дислокации и собирали образцы БАЛ, как
описано выше. В БАЛ подсчитывали общее количество лейкоцитов, а также определяли концентрацию белка и пероксидазную активность супернатанта.

2.1.4. Эксперимент 4. Реакция мукозального иммунитета легких и эндокринный ответ на интраназальную аппликацию суспензии нано- и микроразмерных частиц Таркосила 25

Экспериментальные животные и условия содержания. Исследование выполнено в ЦКП «SPF виварий» ИЦиГ СО РАН на самцах инбредных линий BALB/c (n=31) и C57Bl (n=21) в возрасте 12 недель. Животные SPF статуса были получены из Питомника лабораторных животных «Пущино». Их содержали в индивидуально вентилируемых клетках (IVC, Tecniplast, Италия) по 5 особей, при свободном доступе к воде и гранулированному корму для мышей («Чара», Сергиев Посад), искусственном фотопериоде 12С:12Т (свет выключали в 17:00 ч местного времени), температуре 22-24°C и влажности 40-50 %. В качестве подстилочного материала использовали березовые гранулы, которые были предварительно просушенны, освобожденны от пылевых фракций производителем (ООО «Альбион», Новосибирск). Корм и подстилочный материал поступали к животным после стерилизации автоклавированием при 121°C.

Протокол эксперимента. Самцы мышей каждой линии были поделены на 3 группы по 7-8 особей в каждой. Через 15 мин после наркотизации нембуталом в дозе 40 мг/кг (200 мкл внутрибрюшинно) самцам интраназально апплицировали по 12,5 мкл суспензии Таркосила 25 в каждую ноздрю – 25 мкл на особь. Самцам первой экспериментальной группы интраназально апплицировали суспензию Таркосила 25, диспергированного ультразвуком (наноТ, частицы <100 нм), второй группе – недиспергированную суспензию (микроТ, частицы >100 нм) и третьей группе – физиологический раствор (контроль). Более детально подготовка наноТ и микроТ изложена ниже.
Выбор одинаковых по массе доз, апплицируемых наноТ и микроТ основанны на том, что действующие нормативы запыленности воздушной среды ориентированы на измерение весовых концентраций, в том числе и наночастиц, за исключением карбоновых нанотрубок (Гигиенические нормативы ГН 1.2.2633-10).

Через 4 ч после введения препаратов у самцов контрольной и 2-х опытных групп из ретроорбитального синуса были взяты образцы крови и помещены в пробирки с гепарином. 20 мкл цельной крови анализировали на автоматическом ветеринарном гемоанализаторе Hemascreen 18P (Hospitex diagnostics, Italy). Оставшуюся кровь центрифугировали (15 мин при 3000 об/мин), плазму для определения концентраций кортикостерона и тестостерона переносили в чистые пробирки и хранили при -70°С до проведения анализов. Затем животных умерщвляли методом краниоцервикальной дислокации и собирали образцы БАЛ, как описано выше. В БАЛ подсчитывали общее количество лейкоцитов, а в супернатанте определяли концентрацию белка, пероксидазную активность и концентрации следующих цитокинов: интерлейкинов - ИЛ-2, ИЛ-4, ИЛ-5, ИЛ-10, ИЛ-12(R70), гранулоцитарно-макрофагального колониестимулирующего фактора (ГМ-КСФ), интерферона-гамма (ИНФ-γ) и фактора некроза опухолей (ФНО-α).

2.1.5. Эксперимент 5. Реакция мукозального иммунитета легких и эндокринный ответ на хроническую экспозицию аэрозолем наночастиц Таркосила 25 у самцов мышей, различающихся по типу иммунного ответа

Экспериментальные животные и условия содержания. Исследование выполнено в ЦКП «SPF виварий» ИЦиГ СО РАН на самцах инбредных линий BALB/c (n=12) и C57Bl (n=12) в возрасте 12 недель. Животные SPF статуса были получены из Питомника лабораторных животных «Пущино». Их содержали в индивидуально вентилируемых клетках (IVC, Tecniplast, Италия)
по одному, при свободном доступе к воде и гранулированному корму для мышей («Чара», Сергиев Посад), искусственном фотопериode 12С:12Т (свет выключали в 17:00 ч местного времени), температуре 22-24˚С и влажности 40-50 %. В качестве подстилочного материала использовали березовые гранулы, которые были предварительно просушенны, освобождены от пылевых фракций производителем (ООО «Альбион», Новосибирск). Корм и подстилочный материал поступали к животным после стерилизации автоклавированием при 121˚С.

Протокол эксперимента. Самцы мышей каждой линии были поделены на 2 группы по 8 животных в каждой. Самцов из экспериментальной группы в течение 10 дней ежедневно экспонировали по 3 часа аэрозолем Таркосила 25, а для экспозиции самцов из контрольной группы использовали дистиллированную воду.

На 11 день эксперимента у самцов собирали образцы крови из ретро-орбитального синуса и помещали в гепаринизированные пробирки типа эппендорф. 20 мкл цельной крови анализировали на автоматическом ветеринарном гемоанализаторе Hemascreen 18P (Hospitex diagnostics, Italy). Оставшуюся кровь центрифугировали (15 мин при 3000 об/мин), плазму для определения концентраций кортикостерона и тестостерона переносили в чистые пробирки и хранили при -70˚С до проведения анализов. Затем животных умерщвляли методом краниоцервикальной дислокации и собирали образцы БАЛ. В БАЛ подсчитывали общее количество лейкоцитов, а в супернатанте определяли концентрацию белка, пероксидазную активность и концентрации следующих цитокинов: ИЛ-1β, ГМ-КСФ и ФНО-α. Для определения концентрации кремния в тканях из тушки извлекали обонятельные луковицы, легкие, печень, почки, семенники, селезенку и сердце, взвешивали и хранили при -20˚С до проведения анализа. Анализ был выполнен в Аналитическом центре коллективного пользования института геологии и
минералогии им. В. С. Соболева СО РАН методом атомно-абсорбционной и атомно-эмиссионной спектрометрии.

2.2. Методики исследования

2.2.1. Сбор и хранение мочи самок

В первом эксперименте мочу собирали от 20 половозрелых самок с помощью легкого массажа брюшной части тела у животного, удерживаемого над чашкой Петри. Затем образцы мочи от всех самок объединяли в одну пробирку и хранили при −20°C. Для второго и третьего экспериментов мочу собирали отдельно для каждой линии в общую пробирку, тщательно перемешивали, замораживали и хранили при −20°C. Для стимуляции эстральных циклов самкам предоставляли 2-3 грамма свежесобранной загрязненной подстилки из клеток самцов ежедневно в течение 2 недель до начала сбора образцов мочи. Микроскопическое исследование вагинальных мазков, собранных одновременно с образцами мочи показало, что не менее 30% самок находилось в стадии эструса. В первом и втором экспериментах в день исследования образцы мочи размораживали при комнатной температуре и разводили физиологическим раствором в 5 раз. В третьем эксперименте использовали неразведенную мочу самок.

2.2.2. Подготовка наноматериала

В экспериментах по исследованию эффектов наночастиц в качестве модельного наноматериала использовали Таркосил 25 (SiO2), производства ООО НПФ «Кварц» – неорганические наночастицы оксида кремния, средние размеры частиц, согласно данным производителя, составляют 20 – 25 нм. Исходный препарат представляет собой достаточно однородный порошок, содержащий наночастицы и их агрегаты размерами от 10 до 50 нм. Согласно результатам атомно-эмиссионной спектроскопии в Таркосиле 25 встречаются микропримеси, составляющие в процентах от Si следующие величины: Al =
0.011%, Ba - <0.001%, Ca = 0.019%, Cr = 0.001%, Cu = 0.003%, Fe = 0.029%, K =
0.085%, Li < 0.001%, Mg = 0.009%, Mn = 0.001%, Na = 0.023%, Ti = 0.02%, Zn =
0.003%.

При приготовлении суспензии для интраназального введения, получали
взесь, содержащую 2 мг/мл Таркосила 25 в физиологическом растворе.
Исследование водной суспензии Таркосила 25 показало, что при обычном
перемешивании образуются агрегаты размерами от 10 до 500 нм. В препарате
присутствовали также отдельные частицы размерами до 5 мкм. Поэтому
суспензии обрабатывали с помощью ультразвукового диспергатора с
tитановым зондом диаметром 2 мм, CPX 130 (Cole-Parmer, США) контактным
способом. Первое диспергирование выполняли в течение 2 ч за 12-14 ч до
использования. Затем за 1 ч до введения суспензии повторно диспергировали в
tечение 30 мин. Для удаления отдельных частиц микронного размера вводимые
опытным животным суспензии фильтровали через фильтр с диаметром пор 0,45
мкм. При такой подготовке получали препарат, в котором преобладали частицы
размером менее 100 нм (рис. 1).
Для экспозиции наноаэрозолями Таркосила 25 была сконструирована установка (рис. 2), которая представляла собой две коаксиальные трубы диаметром 50 мм и 40 мм, соответственно. С обеих сторон к внешней трубе были присоединены по 4 камеры для экспозиции животных. Объем каждой камеры 170 мл, диаметр входного отверстия 10 мм, расстояние между входами в камеры 150 мм. Для получения наноразмерных аэрозолей воздух подавали под избыточным давлением 0.5 атм. в коллизионный небулайзер, из которого воздушный поток направлялся во внутреннюю трубу со скоростью 30 л/мин. Внутренняя труба также имела отверстия (d=4 мм) расположенные напротив входов в экспозиционные камеры. Размер частиц определяли с помощью дифференциального спектрометра аэрозолей (ДСА) изготовленного в Институте химической кинетики и горения СО РАН (Новосибирск). Для этого одну из экспозиционных камер соединяли с прибором. Использованные в...
работе суспензия наночастиц Таркосила 25 с концентрацией 0,5 мг/мл и режим подачи воздуха обеспечивали поступление в экспозиционные камеры 180000 частиц/мл. Средний размер аэрозоля составлял 107 нм.

Рис. 2. Установка для экспозиции наноаэрозолями лабораторных животных. Детальное описание дано в тексте.

2.2.3. Гистологическое исследование ткани легкого

Правую часть легкого животных фиксировали в 10% растворе нейтрального формалина. Для дальнейшего гистологического исследования из каждого образца легкого вырезали среднюю часть толщиной ≈ 5-6 мм путём поперечного рассечения и подвергали стандартной обработке: обезвоживали в спиртах возрастающей концентрации и заливали в парафин. Гистологические срезы толщиной 5 – 6 мкм изготавливали на салазочном микротоме (МС-2б, ТУ 64-1-1629-78), окрашивали гематоксилином и эозином. Для компьютерного
анализа гистологических препаратов использовали систему анализа изображений, состоящую из микроскопа проходящего света «AxioStar+» (Carl Zeiss, Germany), компьютера Pentium IV IBM, цветной цифровой видеокамеры Axiocam (Carl Zeiss, Germany) и программы AxioVision 4.3.

Для получения адекватной характеристики гистологических срезов использовали по два среза легкого от каждой особи. При морфометрии структур срезов легких исследовали видимые при 20-кратном увеличении места скопления лейкоцитов по окрашенным гематоксилином клеточным ядрам. Определяли площадь этих мест скопления лейкоцитов, а также плотность их окраски, как меру непрозрачности среды, измеряемую в уровнях градаций «серого» цвета от 0 до 255 (Полоз и др., 2006). С помощью объект–микрометра была проведена калибровка системы анализа изображений, при которой было найдено соответствие микрометров к пикселям на экране монитора по горизонтальной и вертикальной шкале. Исходя из этого площадь лейкоцитарных агрегаций выражали в мкм² (Полоз и др., 2006). Пересчет оптической плотности мест скопления лейкоцитов на абсолютное число клеток проводили с помощью построенной калибровки. Для этого на 40 случайно выбранных местах скопления лейкоцитов с различной плотностью окраски в градациях «серого» цвета от 100 до 180 подсчитывали количество клеток, которые определяли по числу окрашенных ядер. Зависимость числа клеток от оптической плотности описывалась высокодостоверным уравнением регрессии \(F_{1,34} = 59,30; p < 0,001 \):

Количество клеток = 0.0007 × (Площадь агрегации × плотность окраски) + 1.837

Это уравнение было использовано для определения количества клеток в каждом месте скопления лейкоцитов, выделенных при визуальном анализе гистологических препаратов. Все морфометрические данные представлены в пересчете на 1 срез.
2.2.4. Подсчет общего числа лейкоцитов в БАЛ

Во втором эксперименте образцы БАЛ центрифугировали 5 мин при 3000 об/мин при +4°С для осаждения клеток. Супернатант отбирали для определения концентрации белка. Для подсчета клеток оставляли 300 мкл образца БАЛ. Осадок встряхивали для равномерного распределения клеток. 50 мкл суспензии клеток окрашивали равным объемом стандартного раствора Тюрка (Türk's solution, Merk, Germany). Общее количество лейкоцитов подсчитывали в камере Горяева под микроскопом проходящего света Leica DM-1000 (Leica Microsystems, Germany). Количество клеток пересчитывали на 1 мл.

В третьем и четвертом экспериментах общее число лейкоцитов и тромбоцитов в БАЛ определяли на автоматическом счетчике клеток крови Hemascreen 18P (Hospitex diagnostics, Italy). Для этого образцы БАЛ центрифугировали 5 мин при 3000 об/мин при +4°С для осаждения клеток. Супернатант отбирали для определения концентрации белка и пероксидазной активности. Для подсчета над осадком оставляли 50 мкл образца для обеих линий мышей. Осадок встряхивали для равномерного распределения лейкоцитов и тромбоцитов и подсчитывали их количество на гемоцитометре Hemascreen 18P, согласно прилагаемой инструкции. Общее количество клеток пересчитывали в расчете на 1 мл БАЛ.

2.2.5. Определение концентрации интерлейкина-1β (ИЛ-1β) в тканях легких и гипоталамуса

Концентрацию интерлейкина-1β определяли методом твердофазного ИФА в супернатанте гомогената тканей легкого и гипоталамуса. Определение проводили при помощи набора Endogen Mouse IL-1β ELISA Kit (“Endogen”, USA) согласно инструкции. Пробы размораживали при +4°С и аккуратно перемешивали. Готовили рамку с нужным количеством стрипов. Во все лунки вносили по 50 мкл раствора биотинилированных антител, а затем добавляли по 50 мкл исследуемых проб. Стрипы инкубировали при комнатной температуре (+20… +25°С) при встряхивании на шейкере в течение 2 часов. По окончании
инкубации лунки промывали три раза автоматическим вошером Wellwash (Thermo Fisher Scientific, USA), добавляя при каждой промывке по 250 мкл промывочного буфера в каждую лунку. После промывки планшета остатки раствора удаляли декантированием. После этого в каждую лунку добавляли по 100 мкл раствора стрептavidин-пероксидазы и инкубировали 30 мин при комнатной температуре. Затем стрипы снова три раза промывали промывочным буфером, высушивали и немедленно вносили по 100 мкл субстратного раствора тетраметилбензидина. Стрипы помещали в темное место и инкубировали при комнатной температуре. Через 30 минут останавливали ферментативную реакцию, добавляя по 100 мкл стоп-реагента. Оптическую плотность раствора в лунках измеряли на фотометре вертикального сканирования iMarc S/N 12127 (Bio-Rad Laboratories, USA) при длинах волн 450 нм. Параллельно с тестируемыми пробами обрабатывали стандартные растворы ИЛ-1β (Endogen Mouse IL-1β ELISA Kit, USA) для построения калибровочной кривой. Концентрацию цитокина нормировали по массе органа.

2.2.6. Определение концентрации цитокинов интерлейкина-1β (ИЛ-1β), гранулоцитарно-макрофагального колониестимулирующего фактора (ГМ-КСФ) и фактора некроза опухолей-α (ФНО-α) в бронхоальвеолярном лаваже

Концентрации цитокинов в супернатанте БАЛ определяли методом твердофазного ИФА при помощи наборов реагентов IL-1 beta Mouse ELISA, Kit Murine GM-CSF ELISA Kit и Murine TNF alpha Murine ELISA Kit (Abcam, UK) согласно прилагаемым инструкциям. Образцы БАЛ размораживали при +4˚С, тщательно перемешивали. Перед анализом все реагенты доводили до комнатной температуры. Готовили необходимое количество стрипов и вносили в соответствующие лунки по 100 млк образцов БАЛ. Планшет со стрипами для определения ИЛ-1β накрывали и инкубировали ночь при +4˚С. Планшет со стрипами для определения ФНО-α инкубировали 2 часа при комнатной температуре. По окончании инкубаций планшеты промывали с помощью
автоматического вошера Wellwash (Thermo Fisher Scientific, USA) 4 раза, добавляя в лунки по 300 мл промывочного буфера. Затем в каждую лунку добавляли по 100 мл раствора биотинилированных антител и инкубировали 1 час на шейкере при комнатной температуре. Для определения концентрации ГМ-КСФ в лунки планшета вносили по 100 мл БАЛ и по 50 мл раствора биотинилированный антител. После инкубаций планшеты промывали, как описано выше. После этого в каждую лунку планшетов вносили по 100 мл приготовленного раствора стрептавидин-пероксидазы и инкубировали при комнатной температуре на шейкере и по истечении 45 минут повторяли процедуру промывки. После промывки в лунки немедленно вносили по 100 мл субстратного раствора тетраметилбензидина и инкубировали в темноте при комнатной температуре. Через 30 минут ферментативную реакцию останавливали, добавляя во все лунки по 50 мл стоп-реагента. Оптическую плотность в лунках определяли на фотометре вертикального сканирования iMarc S/N 12127 (Bio-Rad Laboratories, USA) при длине волны 450 нм. Параллельно с тестируемыми образцами исследовали стандартные растворы цитокинов для построения калибровочной кривой. Концентрации цитокинов нормировали на концентрации белка в образцах БАЛ.

2.2.7. Одновременное определение концентрации ряда цитокинов в одном образце бронхоальвеолярного лаважа

Для определения концентрации цитокинов в БАЛ использовали набор Bio-Plex Mouse Cytokine Th1/Th2 Assay (Bio-Rad Laboratories, США). Данный метод основан на реакции взаимодействия антиген-антитело на поверхности полистирольных микросфер диаметром 5 мкм, который позволяет проводить одновременный анализ нескольких веществ в одном образце биологической жидкости. Используемый набор реагентов предназначен для одновременного определения концентраций ИЛ-2, ИЛ-4, ИЛ-5, ИЛ-10, ИЛ-12(P70), гранулоцитарно-макрофагального колониестимулирующего фактора (ГМ-КСФ), интерферона-гамма (ИНФ-γ) и фактора некроза опухолей (ФНО-α) в 50
мкл биологической жидкости. Анализ проводили согласно приложенной инструкции. Образцы БАЛ размораживали при +4°С и тщательно перемешивали. В лунки планшета вносили по 50 мкл рабочего раствора суспензии полистирольных микросфер, удаляли буфер вакуумной фильтрацией и вносили по 50 мкл образца БАЛ. Планшет накрывали пленкой и инкубировали 30 мин при комнатной температуре в темноте при встряхивании на шейкере (300 об./мин). Затем планшет трижды промывали промывочным буфером и высушивали микросферы вакуумной фильтрацией. Во все лунки вносили по 25 мкл раствора биотинилированных антител, инкубировали 30 мин при комнатной температуре в темноте при встряхивании на шейкере (300 об./мин). По истечении инкубации планшет промывали 3 раза и высушивали микросферы и вносили в лунки раствор стрептавидина, конъюгированного с фикоэритрином. Инкубировали 10 мин при комнатной температуре в темноте при встряхивании на шейкере (300 об./мин). Затем лунки планшета снова промывали и осушали 3 раза. После этого вносили во все лунки по 125 мкл буфера, тщательно встряхивали планшет и проводили измерение на системе Bio-Plex 200 Suspension Array System с программным обеспечением Bio-Plex Manager Software 4.1.1 (Bio-Rad Laboratories, США). Параллельно с тестируемыми пробами обрабатывали стандартные растворы исследуемых цитокинов (Bio-Plex Mouse Cytokine Th1/Th2 Assay, Bio-Rad Laboratories, США) для построения калибровочных кривых.

2.2.8. Определение концентрация белка в БАЛ

Концентрацию белка в БАЛ определяли по методу Бредфорда, основанному на изменении окраски красителя кумасси при взаимодействии с белками (Bradford, 1976). В лунки иммунологического планшета вносили 10 мкл надосадочной жидкости, затем добавляли по 150 мкл раствора кумасси (Coomassie Brilliant Blue G-250, Sigma-Aldrich, USA) и измеряли оптическую плотность при длине волны 570 нм на фотометре вертикального сканирования iMarc S/N 12127 (Bio-Rad Laboratories, USA). Концентрацию белка определяли
по стандартной серии разведений бычьего сывороточного альбумина (Sigma-Aldrich, USA) убывающей концентрации, которую исследовали параллельно с образцами. Концентрацию белка в образцах выражали в мкг/мл.

2.2.9. Определение пероксидазной активности в БАЛ

Пероксидазную активность определяли колориметрическим методом в 50 мкл супернатанта БАЛ. Для проведения цветной реакции в каждую пробу вносили субстратный раствор тетраметилбензидина (100 мкл) и инкубировали 10-15 мин в темноте при комнатной температуре. Реакцию останавливали стоп-реагентом (1,8М H2SO4). Оптическую плотность образцов измеряли на планшетном спектрофотометре iMark™ (BioRAD Laboratories, Inc) со светофильтром 450 нм. Пероксидазную активность выражали в условных единицах.

2.2.10. Определение концентрации кортикостерона в плазме крови

Концентрацию кортикостерона в плазме крови определяли методом РИА, который основан на связывании стероидных гормонов специфическими антителами. Образцы плазмы размораживали при +4°C. Содержимое пробирок аккуратно перемешивали. Образцы плазмы предварительно разводили солевым фосфатным буфером (рН 7,4-7,6) с добавлением желатина (1%) в 40 раз. Затем пробирки с разведенными пробами нагревали 15 мин при 80°C на водяной бане для разрушения связывающих гормоны белков, охлаждали и центрифугировали 10 мин при 2000 об/мин. В пробирки вносили по 100 мкл предварительно разведенных проб, затем добавляли по 500 мкл антисыворотки (“Anti-Corticosterone”, Sigma-Aldrich, США) и инкубировали 30 мин при комнатной температуре для связывания кортикостерона пробы с антителами. После чего добавляли 0,1 мл меченого тритием кортикостерона фирмы “Amersham” и инкубировали при 37°C в течение 1 часа. После инкубации пробирки охлаждали на ледяной бане (+4°C) в течение 15 мин. Для удаления несвязанного с антителами кортикостерона использовали инкубацию реакционной смеси с 0,2 мл 1% суспензии активированного угля на ледяной
бане в течение 10 мин. По окончании инкубации пробирки центрифугировали 15 мин при 3000 об/мин в рефрижераторной центрифуге при +4°C. Затем 0,6 мл супернатанта переносили во флаконы для счета с 5 мл сцинтилляционной жидкости, которые затем прогревали 5 мин при 60°C. После охлаждения при комнатной температуре, считали радиоактивность проб в сцинтилляционном β-счетчике. Параллельно с пробами обрабатывали стандартные растворы кортикостерона (Sigma-Aldrich, США) для построения калибровочной кривой.

2.2.11. Определение концентрации тестостерона в плазме крови

Концентрацию тестостерона определяли методом твердофазного ИФА, основанном на связывании стероидных гормонов специфическими антителами, иммобилизованными на внутренней поверхности лунок. Определение проводили при помощи набора «СтероидИФА-тестостерон-01» производства ЗАО «Алкор Био» согласно приложенной инструкции. Растров плазмы размораживали при +4˚С и аккуратно перемешивали содержимое пробирок. Готовили рамку с нужным количеством стрипов. В лунки вносили по 50 мкл исследуемой плазмы. Затем во все лунки добавляли по 200 мкл рабочего раствора конъюгата тестостерон-пероксидазы. Стрипы инкубировали при комнатной температуре (+18… +25˚С) при встряхивании на шейкере в течение 1,5 часов. По окончании инкубации лунки промывали три раза автоматическим промывателем Wellwash (Thermo Fisher Scientific, USA), добавляя при каждой промывке по 250 мкл промывочного буфера в каждую лунку. После промывки планшета остатки раствора удаляли декантированием (постукиванием рамки со стрипами в перевернутом положении по фильтровальной бумаге). Немедленно вносили во все лунки по 100 мкл раствора тетраметилбензидина и инкубировали стрипы при комнатной температуре в темноте в течение 15 мин. Затем добавляли во все лунки по 100 мкл стоп-реагента для остановки ферментативной реакции и встряхивали на шейкере в течение 1-2 мин. Оптическую плотность раствора в лунках измеряли на фотометре вертикального сканирования iMark™ (BioRAD Laboratories, Inc) при длине
волны 450 нм. Параллельно с плазмой обрабатывали стандартные сыворотки «СтероидИФА-тестостерон-01» для построения калибровочной кривой.

2.2.12. Статистический анализ

Результаты исследования представлены как M±SEM. Для нормально распределенных признаков использовали одно и двухфакторный дисперсионный анализ (ANOVA). При ненормальном распределении использовали тест Краскела-Уоллеса. Множественное сравнение средних проводили на основе критерия – least significant differences (LSD). Для оценки достоверности различий между двумя средними использовали: при нормальном распределении тест Стьюдента, а при ненormalном распределении – тест Манна-Уитни. Для интеграции данных, отражающих комплексное реагирование отдельных систем организма на введение препаратов, использовали метод главных компонент.
3.1. Иммуно-эндокринная реакция на интраназальную аппликацию мочи самок и бактериального липополисахарида (Эксперимент 1)

3.1.1. Лейкоцитарная интервенция в легкие

На гистологических препаратах исследованных нами срезов легких были видны небольшие скопления лейкоцитов, которые легко идентифицировались по окрашенным гематоксилином клеточным ядрам (рис. 3). Причем у животных, интраназально получавших мочу самок, бактериальный ЛПС или их сочетание, лейкоцитарные агрегации наблюдались чаще, чем у контрольных животных. Действительно, критерий наименьшей значимой разности (LSD – тест) показал, что все три стимула (моча самок, ЛПС и их сочетание) вызывали лейкоцитарную интервенцию в легкие самцов, в отличие от физиологического раствора, используемого в качестве контрольного препарата (табл. 1). При этом, моча самок оказывала более выраженное влияние на количество мест скопления лейкоцитов в легких по сравнению бактериальным ЛПС (203,5±54,7 и 61,4±13,9, соответственно; df=18, p=0,01, Т-тест Стьюдента для логарифмированных значений), хотя средний размер лейкоцитарных агрегаций не отличался в этих двух группах (79,8±5,4 и 74,1±4,1, соответственно; df=18, p=0,4, T-тест Стьюдента для логарифмированных значений). Таким образом, общее число лейкоцитов в тканях легких было значимо выше у самцов, получавших мочу самок по сравнению с животными, которым вводили ЛПС (16831±5178 и 4884±1322, соответственно; df=18; p=0,01, T-тест Стьюдента для логарифмированных значений). Сочетание воздействий мочи самок и бактериального ЛПС не вызывало дополнительного увеличения лейкоцитарной интервенции в легкие (табл. 1).
Рис. 3. Гистологические изменения в тканях легких самцов мышей через 2 часа после интраназального введения растворов, содержащих мочу самок, ЛПС и мочу самок и ЛПС одновременно. На микрофотографиях представлены характерные образцы тканей легких самцов контрольной группы, получавших физиологический раствор (A), бактериальный ЛПС (B), мочу самок (V) и раствор, содержащий ЛПС и мочу самок (Г). Стрелками показаны места скопления лейкоцитов. (Увеличение ×40).
Таблица 1
Показатели лейкоцитарной интервенции в легкие у самцов через 2 часа после интраназального введения растворов, содержащих мочу самок, ЛПС и мочу самок и ЛПС одновременно

<table>
<thead>
<tr>
<th>Группа</th>
<th>Число лейкоцитарных агрегатов (N)</th>
<th>Число лейкоцитов на агрегат (N)</th>
<th>Число лейкоцитов на срез (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Контроль</td>
<td>31,14±9,30 (7) Б</td>
<td>50,56±4,71 (7) Б</td>
<td>1617,59±509,38 (7) Б</td>
</tr>
<tr>
<td>ЛПС</td>
<td>61,36±13,40 (7) Б</td>
<td>74,08±9,4 (7) Б</td>
<td>4884,14±1321,54 (7) Б</td>
</tr>
<tr>
<td>Моча самок</td>
<td>203,50±54,78 (6) А</td>
<td>79,81±5,41 (7) А,Б</td>
<td>16830,69±5178,04 (6) А</td>
</tr>
<tr>
<td>Моча самок+ЛПС</td>
<td>144,43±27,38 (7) А</td>
<td>99,58±9,49 (7) А</td>
<td>13981,43±2774,58 (7) А</td>
</tr>
</tbody>
</table>

Примечание: Разными буквами обозначены статистически значимо различающиеся средние величины (критерий наименьшей значимой разницы для логарифмированных значений, р<0,05).

Более выраженное влияние мочи самок на лейкоцитарную интервенцию было подтверждено результатами двухфакторного дисперсионного анализа, в котором в качестве факторов было выбрано присутствие в интраназально вводимом препарате мочи самок или ЛПС. Так, в отличие от ЛПС, присутствие мочи самок в препарате статистически значимо влияло как на количество лейкоцитарных агрегаций, так и на общее число лейкоцитов на срез (табл. 2). Бактериальный липopolисахарид в свою очередь оказывал статистически значимое влияние только на среднее число лейкоцитов в скоплении (табл. 2). Взаимодействие двух этих факторов (введение мочи самок и введение ЛПС) не было статистически значимым (табл. 2).
Двухфакторный дисперсионный анализ для нормально распределенных или логарифмированных признаков с факторами присутствие (да) или отсутствие (нет) мочи самок или ЛПС в апилицируемом растворе

<table>
<thead>
<tr>
<th>Показатели</th>
<th>Факторы</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Моча самок (нет/да)</td>
<td>ЛПС (нет/да)</td>
<td>Моча×ЛПС</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$F_{1,33}$</td>
<td>p</td>
<td>$F_{1,33}$</td>
<td>p</td>
</tr>
<tr>
<td>Число лейкоцитарных агрегатов (логарифмир.)</td>
<td>23,04</td>
<td><0,001</td>
<td>0,78</td>
<td>=0,39</td>
</tr>
<tr>
<td>Число лейкоцитов на агрегат (логарифмир.)</td>
<td>15,52</td>
<td><0,001</td>
<td>8,09</td>
<td><0,01</td>
</tr>
<tr>
<td>Число лейкоцитов на срез (логарифмир.)</td>
<td>28,37</td>
<td><0,01</td>
<td>2,38</td>
<td>=0,14</td>
</tr>
<tr>
<td>ИЛ-1β в легких</td>
<td>0,56</td>
<td>=0,46</td>
<td>5,26</td>
<td>=0,028</td>
</tr>
<tr>
<td>Кортикостерон</td>
<td>0,44</td>
<td>=0,51</td>
<td>11,94</td>
<td>=0,0015</td>
</tr>
<tr>
<td>Тестостерон (логарифмир.)</td>
<td>0,89</td>
<td>=0,35</td>
<td>4,80</td>
<td>=0,036</td>
</tr>
<tr>
<td>ГК1</td>
<td>0,36</td>
<td>=0,55</td>
<td>4,56</td>
<td>=0,04</td>
</tr>
<tr>
<td>ГК2</td>
<td>9,95</td>
<td>=0,004</td>
<td>8,92</td>
<td>=0,007</td>
</tr>
</tbody>
</table>

Примечание: Жирным шрифтом выделены статистически значимые влияния факторов ($p<0,05$).
3.1.2. Содержание интерлейкина-1β в тканях легкого и гипоталамуса

Содержание ИЛ-1β в тканях легких было минимальным у контрольных особей и у мышей, которым апплицировали мочу самок, а максимальным у особей, получивших мочу самок и ЛПС (рис. 4). Двухфакторный дисперсионный анализ, в котором в качестве факторов было выбрано присутствие в интраназально вводимом препарате мочи самок или ЛПС, показал, что на концентрацию ИЛ-1β в тканях легких статистически значимое влияние оказывало введение бактериального ЛПС. Тогда как введение мочи самок не влияло на концентрацию ИЛ-1β в легких (табл.2). Действительно, концентрация ИЛ-1β в легких самцов, получавших только ЛПС или ЛПС в сочетании с мочой самок (326±59 пг/мг \(df=18 \)) была выше, чем у животных, получавших физиологический раствор или мочу самок (166±21 пг/мг \(df=16; p=0,008, \) T-тест Стьюдента для логарифмированных значений). Взаимодействие этих факторов было статистически не значимым (табл.2).

![Рис. 4. Концентрация ИЛ-1β в тканях легких. Разные буквы над столбцами показывают статистически значимые различия между группами (критерий наименьшей значимой разности, \(p<0,05 \)).](image-url)
Содержание ИЛ-1β в тканях гипоталамуса контрольных животных было ниже уровня детектирования. Тогда как интраназальное введение ЛПС вызывало статистически значимое увеличение концентрации ИЛ-1β в гипоталамусе (p=0,017; Манн-Уитни U-тест). Другие стимулы (моча самок и сочетание мочи самок с ЛПС) не оказывали значимого влияния на уровень ИЛ-1β в гипоталамусе (рис. 5). Вместе с тем, непараметрический метод ANOVA показал достоверное влияние на уровень ИЛ-1β в гипоталамусе присутствия в интраназальных стимулах бактериального эндотоксина (F_{1,34}=4,36, p=0,044), а также взаимодействия факторов ЛПС и моча (F_{1,34}=4,32, p=0,048). Собственный эффект аппликации мочевых меток был статистически незначимым (F_{1,34}=0,00, p=0,99). Таким образом, только присутствие в апплицируемых растворах ЛПС вызывало повышение концентрации ИЛ-1β в гипоталамусе.

Рис. 5. Концентрация ИЛ-1β в тканях гипоталамуса самцов через 2 часа после интраназального введения растворов, содержащих мочу самок, ЛПС и мочу самок и ЛПС одновременно. *- p=0.017 (Манн-Уитни U-тест).
3.1.3. Содержание кортикоцистерона в плазме крови

Концентрация кортикоцистерона в плазме крови была значимо выше у самцов, получавших бактериальный ЛПС или ЛПС в сочетании с мочой самок, по сравнению с животными, которым вводили физиологический раствор или только мочу самок (рис. 6). Двухфакторный дисперсионный анализ (табл. 2) показал, что только присутствие в предоставляемом растворе бактериального ЛПС статистически значимо повышало концентрацию кортикоцистерона в плазме крови самцов (127,3±10,0 нг/мл) по сравнению с введением растворов, не содержащих ЛПС – физиологического раствора и мочи самок (77,4±10,1 нг/мл, df=36, t=3,51; p=0,001, Т-тест Стьюдента).

Рис. 6. Концентрация кортикоцистерона в плазме самцов через 2 часа после интраназального введения растворов, содержащих мочу самок, ЛПС и мочу самок и ЛПС одновременно. Разными буквами над столбцами обозначены статистически значимо различающиеся средние величины (критерий наименьшей значимой разницы для логарифмированных значений, p<0,05).
3.1.4. Содержание тестостерона в плазме крови

Критерий наименьшей значимой разности выявил различия в концентрации тестостерона в плазме крови самцов, экспонированных мочой самок и бактериальным ЛПС (рис. 7). Как и в случае с кортикостероном, двухфакторный дисперсионный анализ показал, что на концентрацию тестостерона в плазме значительно влияет только присутствие или отсутствие ЛПС в апплицируемом растворе (табл. 2). Так, у животных, получавших растворы, содержащие ЛПС, уровень тестостерона был значительно ниже такового у животных, которым вводили растворы, не содержащие ЛПС (6,3±1,7 нг/мл и 12,1±2,1, соответственно). Эти различия в уровнях андрогена были статистически значимыми (df=36, t=2,26; p=0,03. T-тест Стьюдента для логарифмированных значений).

![Diagram](image.png)

Рис. 7. Концентрация тестостерона в плазме крови самцов через 2 часа после интраназального введения растворов, содержащих мочу самок, ЛПС и мочу самок и ЛПС одновременно. Разными буквами над столбцами обозначены статистически значимо различающиеся средние величины (критерий наименьшей значимой разницы для логарифмированных значений, p<0,05).
3.1.5. Интегративная иммуно-эндокринная реакция на мочу самок и бактериальный липополисахарид

Все показатели, характеризующие физиологический ответ самцов на мочу самок и бактериальный ЛПС, были обработаны методом главных компонент (ГК), который позволяет выделить основные факторы, влияющие на изменчивость признаков. В исследуемой выборке были выделены две главные компоненты, которые описывали 29,3% (ГК1) и 27,2% (ГК2) общей изменчивости (рис. 8). В соответствии с показателями, вносящими основной вклад в ГК1 (табл. 3), ее можно интерпретировать как ИЛ-1β-зависимую мобилизацию лейкоцитов в легкие, сопровождаемую подавлением секреции андрогенов. Тогда как ГК2 отражает ИЛ-1β-независимую мобилизацию лейкоцитов, сопровождаемую низкими уровнями ИЛ-1β в гипоталамусе и кортикостерона в плазме крови. Двухфакторный дисперсионный анализ выявил статистически значимый эффект присутствия ЛПС в апплицируемых растворах на величину ГК1, которая составляла \(-0,40\pm0,27\) у животных, не получавших ЛПС (контроль и моча самок), и \(0,39\pm0,26\) у животных, получавших ЛПС (ЛПС и ЛПС + Моча самок) (табл. 2). Различия между этими показателями были статистически значимыми (\(df=36, t=2,45; p=0,02, T\)-тест Стьюдента).

На величину ГК2 статистически значимый эффект оказывало воздействие как ЛПС, так и мочи самок (табл. 2, рис. 8). Среднее значение ГК2 у животных, получавших ЛПС было \(-0,42\pm0,21\), а у животных не получавших ЛПС было равно \(0,49\pm0,22\) (\(df=36, t=2,50; p=0,01, T\)-тест Стьюдента). В отличие от ЛПС, интраназальное введение мочи самок проявлялось в более высоком уровне ГК2 у животных, получавших мочу самок (\(0,51\pm0,22\)) по сравнению с животными, не получавшими мочу самок (\(-0,45\pm0,21\)) (\(df=36, t=2,70; p<0,01, T\)-тест Стьюдента).
Рис. 8. Распределение экспериментальных групп в координатах ГК1 и ГК2 (среднее значение ± стандартная ошибка).

Таблица 3

Вклад анализируемых признаков в ГК1 и ГК2.

<table>
<thead>
<tr>
<th>Показатели</th>
<th>ГК1</th>
<th>ГК2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Лейкоциты в легких</td>
<td>0,54</td>
<td>0,52</td>
</tr>
<tr>
<td>Кортикостерон</td>
<td>0,01</td>
<td>-0,74</td>
</tr>
<tr>
<td>Тестостерон</td>
<td>-0,81</td>
<td>0,24</td>
</tr>
<tr>
<td>ИЛ-1β в гипоталамусе</td>
<td>0,18</td>
<td>-0,69</td>
</tr>
<tr>
<td>ИЛ-1β в легких</td>
<td>0,70</td>
<td>-0,01</td>
</tr>
</tbody>
</table>

Примечание: жирным шрифтом выделены наиболее значимые вклады.
3.2. Зависимость иммуно-эндокринной реакции на хемосигналы самок и бактериальный липополисахарид от генотипа самцов
(Эксперимент 2)

3.2.1. Общее число лейкоцитов в БАЛ

У самцов мышей линий C57Bl и BALB/c, различающихся по преобладанию клеточного (Th1) и гуморального (Th2) типов иммунного ответа, соответственно, исследовали реакцию мукозального иммунитета легких на инфекционные (ЛПС) и неинфекционные стимулы. Величину лейкоцитарной интервенции в верхние дыхательные пути оценивали по числу иммунокомпетентных клеток в бронхоальвеолярных смывах. Двухфакторный дисперсионный анализ экспериментальных данных показал, что общее количество лейкоцитов в БАЛ (рис. 9) зависело от генотипа ($F_{1,36}=84,88$, $p<0,001$, для логарифмированных значений), введения препаратов ($F_{1,36}=4,76$, $p=0,008$, для логарифмированных значений), а также взаимодействия этих факторов ($F_{1,36}=5,54$, $p=0,004$, для логарифмированных значений).

Реакция генотипов на исследуемые стимулы была различной (рис. 9). У самцов линии BALB/c введение ЛПС и мочи самок вызывало значимое увеличение количества лейкоцитов в БАЛ. Число лейкоцитов в БАЛ самцов, получавших мочевину, не отличалось от такого у контрольных животных. Тогда как у самцов линии C57Bl число лейкоцитов в БАЛ не изменялось в ответ на исследуемые стимулы ($F_{1,20}=1,16$, $p=0,35$, для логарифмированных значений).
Рис. 9. Количество лейкоцитов в БАЛ самцов линии C57Bl (темные столбцы) и линии BALB/c (светлые столбцы) через 4 часа после введения препаратов: физиологический раствор (ФР), ЛПС, моча самок, раствор мочевины. Разными буквами над столбцами обозначены статистически значимо различающиеся средние величины (критерий наименьшей значимой разницы для логарифмированных значений, \(p < 0.05 \)).

3.2.2. Концентрация белка в БАЛ

Согласно двухфакторному дисперсионному анализу, на концентрацию белка в БАЛ (рис. 10) влияли генотип самцов мышей (\(F_{1,36} = 39.34, p < 0.001 \)), а также введение препаратов (\(F_{1,36} = 3.23, p = 0.037 \)). Эффект взаимодействия факторов – генотип и введение препаратов – был близким к статистически значимому (\(F_{1,36} = 2.7, p = 0.06 \)). У самцов мышей линии BALB/c введение ЛПС и мочи самок, но не раствора мочевины, вызывало повышение концентрации белка в БАЛ относительно контроля. У самцов линии C57Bl концентрация белка в БАЛ не изменялась в ответ на все три стимула (\(F_{1,20} = 0.69, p = 0.57 \), для логарифмированных значений).
Рис. 10. Концентрация белка в БАЛ самцов линии C57Bl (темные столбцы) и линии BALB/c (светлые столбцы) через 4 часа после введения препаратов: физиологический раствор (ФР), ЛПС, моча самок, раствор мочевины. Разными буквами над столбцами обозначены статистически значимо различающиеся средние величины (Критерий наименьшей значимой разницы, \(p < 0,05 \)).

3.2.3. Кортикостерон в плазме крови

На концентрацию кортикостерона в плазме крови достоверное влияние оказывали генотип животных \((F_{1,36}=4,26, \ p=0,048) \) и введение препаратов \((F_{1,36}=6,48, \ p=0,002) \). Взаимодействие этих факторов не было статистически значимым \((F_{1,36}=0,78, \ p=0,51) \). Поскольку взаимодействие факторов не вносило существенного вклада в дисперсию анализируемого признака, для оценки влияния препаратов данные по обоим генотипам были объединены после их предварительного центрирования относительно средних значений для каждой линии мышей. Из анализа остаточных дисперсий видно, что введение ЛПС вызывало максимальный подъем концентрации кортикостерона в плазме крови (рис. 11). При интраназальной аппликации мочи и мочевины уровень
глюкокортикоидов был ниже, чем при аппликации ЛПС, но выше чем в контроле. Но отличие от контроля (введение физиологического раствора) было статистически значимым только при воздействии мочой самок.

Рис. 11. Остаточные дисперсии (центрирование относительно средних по генотипу) концентраций кортикостерона в плазме самцов через 4 часа после введения препаратов. Разными буквами над столбиками обозначены статистически значимо различающиеся средние величины остаточных дисперсий концентраций кортикостерона (Критерий наименьшей значимой разницы, $p<0.05$).

3.2.4. Тестостерон в плазме крови

Поскольку вариации уровня тестостерона отличались от нормального и лог-нормального распределения, при анализе данных были использованы методы непараметрической статистики. Влияние генотипа на концентрацию тестостерона в плазме самцов было близко к статистически значимому ($H_{1,37}=3.12$, $p=0.07$, критерий Краскла-Уоллиса). Введение препаратов значимо влияло на концентрацию тестостерона только у самцов линии BALB/c.
(H_{3,17}=7,87, p=0,048), в отличие от линии C57Bl (H_{3,20}=1,38, p=0,71, критерий Краскела-Уоллиса). Концентрация тестостерона (рис. 12) в плазме самцов линии BALB/c была значимо выше, чем у контрольных самцов линии C57Bl (Z=2,19, p=0,03, U-критерий Манна-Уитни), и достоверно снижалась в ответ на введение ЛПС (Z=2,4, p=0,02) и мочи самок (Z=1,98, p=0,047, U-критерий Манна-Уитни). При этом концентрации тестостерона и кортикостерона в плазме самцов линии BALB/c отрицательно коррелировали между собой (R=-0,69, p=0,003).

Рис. 12. Концентрация тестостерона в плазме самцов линии C57Bl (темные столбцы) и линии BALB/c (светлые столбцы) через 4 часа после введения препаратов: физиологический раствор (ФР), ЛПС, моча самок, раствор мочевины.

* – p<0,05, относительно контрольных самцов линии BALB/c, U-критерий Манна-Уитни.
3.3. Иммуно-эндокринные эффекты суточной экспозиции запахом самок и феромоном стресса самок мышей (Эксперимент 3)

3.3.1. Показатели бронхоальвеолярного лаважа

Двухфакторный дисперсионный анализ показал, что общее число лейкоцитов в БАЛ (табл. 4), подсчитанное через 24 часа после начала экспозиции самцов мышей запахами мочи и феромона самок 2,5-диметилпиразина (ДМП), не зависело ни от генотипа самцов ($F_{1,39}=2,43$, $p=0,13$), ни от запахового воздействия ($F_{1,39}=0,89$, $p=0,42$). Взаимодействие этих факторов также не было статистически значимым ($F_{1,39}=1,10$, $p=0,34$). Таким образом, оба воздействия не приводили к статистически значимой мобилизации лейкоцитов в легкие через сутки после начала экспозиции.

В отличие от лейкоцитов, число тромбоцитов в БАЛ самцов мышей линии BALB/c значительно повышалось в ответ на экспозицию запахом феромона самок (ДМП), тогда как у самцов линии C57Bl оставалось неизменным в ответ на оба запаховых стимула (табл. 4).

Концентрация белка в БАЛ самцов обеих линий, согласно двухфакторному дисперсионному анализу (генотип и экспозиция запаховыми стимулами), также как и число лейкоцитов не изменялась в ответ на экспозицию исследуемыми запаховыми стимулами (табл. 4). Влияние генотипа – $F_{1,40}=2,88$, $p=0,09$, влияние запаховой среды – $F_{1,40}=0,42$, $p=0,66$, эффект взаимодействия факторов – $F_{1,40}=2,94$, $p=0,39$.

Несмотря на отсутствие статистически значимых изменений числа лейкоцитов в БАЛ, пероксидазная активность, как показатель активации гранулоцитов, зависела у самцов линии BALB/c от запахового воздействия и значительно возрастала в ответ на 24-часовую экспозицию запахом мочи самок. При этом у самцов линии C57Bl пероксидазная активность в БАЛ оставалась неизменной (табл. 4).
Таблица 4
Общее число лейкоцитов, тромбоцитов, концентрация белка и пероксидазная активность в БАЛ самцов мышей линий BALB/c и C57Bl при экспозиции запахом мочи самок и феромона самок 2,5-диметилпирэзина (ДМП)

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Линия</th>
<th>Контроль (N)</th>
<th>Моча самок (N)</th>
<th>ДМП (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Лейкоциты ×10^3/мл</td>
<td>BALB/c</td>
<td>49,7±7,7(7)</td>
<td>56,9±7,14(6)</td>
<td>43,8±4,5(7)</td>
</tr>
<tr>
<td></td>
<td>C57Bl</td>
<td>49,2±7,9(6)</td>
<td>37,8±4,6(7)</td>
<td>38,5±6,7(6)</td>
</tr>
<tr>
<td>Тромбоциты×10^5/мл</td>
<td>BALB/c</td>
<td>37,1±2,8(7)</td>
<td>41,4±1,4(7)</td>
<td>51,4±6,1(7)^А</td>
</tr>
<tr>
<td></td>
<td>C57Bl</td>
<td>38,6±3,6(6)</td>
<td>36,9±1,9(7)</td>
<td>39,3±3,5(6)</td>
</tr>
<tr>
<td>Концентрация белка, мкг/мл</td>
<td>BALB/c</td>
<td>215,8±26,9(7)</td>
<td>284,3±45,9(7)</td>
<td>254,7±21,9(7)</td>
</tr>
<tr>
<td></td>
<td>C57Bl</td>
<td>304,9±15,2(6)</td>
<td>291,5±24,5(7)</td>
<td>285,8±34,9(6)</td>
</tr>
<tr>
<td>Пероксидазная активность, у.е.</td>
<td>BALB/c</td>
<td>5,3±1,9(7)^б</td>
<td>10,9±1,9(7)^А</td>
<td>3,8±1,2(7)^б</td>
</tr>
<tr>
<td></td>
<td>C57Bl</td>
<td>3,1±0,5(6)</td>
<td>2,6±0,4(7)</td>
<td>2,7±0,9(6)</td>
</tr>
</tbody>
</table>

Примечание: разными надстрочными буквами обозначены средние значения, достоверно отличающиеся друг от друга (p<0.05, критерий наименьшей значимой разницы).

3.3.2. Количество лейкоцитов в крови
Согласно двухфакторному дисперсионному анализу общее число лейкоцитов в крови (рис. 13) через 24 часа после начала экспозиции самцов запахом мочи самок и феромона самок зависело только от генотипа самцов (F_{1,40}=4,25, p<0,05, для логарифмированных значений), но не зависело от запахового воздействия (F_{1,40}=0,89, p=0,41, для логарифмированных значений). Эффект взаимодействия этих факторов не был статистически значимым (F_{1,40}=0,32, p=0,72, для логарифмированных значений). При анализе данных отдельно по каждой линии было отмечено, что у самцов линии C57Bl количество лейкоцитов в крови значимо снижалось в ответ на экспозицию запахом ДМП по сравнению с контрольными животными (df=10, p=0,03, Т-тест
Стьюдента для логарифмированных значений). Это происходило главным образом за счет снижения количества гранулоцитов и лейкоцитов среднего размера, в основном представленных соответственно нейтрофилами и моноцитами. Тогда как у самцов линии BALB/c их число оставалось неизменным в ответ на запаховые стимулы ($F_{1,21}=0,06$, $p=0,94$, для логарифмированных значений).

Рис. 13. Количество лейкоцитов в крови самцов мышей линий BALB/c и C57Bl при экспозиции запахом мочи самок и феромона самок 2,5-диметилпиразина. * – $p=0,03$ по сравнению с контрольными самцами, Т-тест Стьюдента.

3.3.3. Тромбоциты в крови

Количество тромбоцитов в крови зависело от генотипа ($F_{1,40}=34,06$, $p<0,0001$), запаховой экспозиции ($F_{1,40}=3,47$, $p=0,04$) и от взаимодействия этих факторов ($F_{1,40}=5,47$, $p=0,009$). Так, число тромбоцитов в крови контрольных животных оказалось почти в 2 раза ниже у самцов линии BALB/c, чем у самцов линии C57Bl (294,0±51,9 и 622,8±60,2, соответственно; $df=11$, $t=4,16$; $p=0,001$,
Т-тест Стьюдента). В ответ на экспозицию запахом феромона самок число тромбоцитов крови самцов BALB/c возрастало, достигая уровня, наблюдаемого у самцов линии C57Bl (рис. 14А). Объем тромбоцитов в крови контрольных мышей линии BALB/c был выше, чем у C57Bl, и достоверно снижался в ответ на экспозицию ДМП (рис. 14Б). При этом у самцов линии C57Bl как количество тромбоцитов в крови \(F_{1,19}=0,87, p=0,44 \), так и их объем \(F_{1,19}=0,17, p=0,85 \), однофакторный дисперсионный анализ) не изменялись в ответ на исследуемые запаховые стимулы.

Рис. 14. Количество (А) и средний объем (Б) тромбоцитов в крови самцов мышей линий BALB/c и C57Bl при экспозиции запахом мочи самок и феромона самок 2,5-диметилпиразина. Разными буквами над столбцами обозначены средние, достоверно отличающиеся друг от друга \(p<0,05 \), критерий наименьшей значимой разницы); * \(p<0,01 \) по сравнению с контрольными самцами линии BALB/c, T-тест Стьюдента.

3.3.4. Кортикостерон в плазме

На концентрацию кортикостерона в плазме крови самцов (рис. 15А) достоверное влияние оказывала только запаховая среда \(F_{1,40}=5,94, p=0,01 \).
Тогда как, влияние генотипа \((F_{1,40}=0,32, p=0,57) \) и взаимодействие этих двух факторов \((F_{1,40}=1,10, p=0,34) \) не было статистически значимым. Поскольку взаимодействие факторов не вносило существенного вклада в дисперсию анализируемого признака, то для оценки влияния запаховой среды данные по обоим генотипам были объединены после их предварительного центрирования (\(z \) – преобразование) относительно средних значений для каждой линии (рис. 15Б). Анализ остаточных дисперсий концентрации кортикостерона показал, что экспозиция самцов запахом мочи самок максимально снижало его уровень. При этом снижение уровня кортикостерона в ответ на экспозицию запахом ДМП также было близко к статистически значимому \((p=0,056, \) критерий наименьшей значимой разности).

Рис. 15. Концентрация кортикостерона (A) и остаточные дисперсии концентраций кортикостерона (B) в плазме самцов при экспозиции запахом мочи самок и феромона самок 2,5-диметилпиразина. Разными буквами над столбцами обозначены статистически значимо различающиеся средние величины остаточных дисперсий концентраций кортикостерона \((p<0,05, \) критерий наименьшей значимой разницы).
3.3.5. Концентрация тестостерона в плазме

Как и в случае с кортикостероном, на концентрацию тестостерона в плазме крови самцов значимое влияние оказывала только запаховая среда \((H_{2,40}=6,46, \ p=0,04, \ \text{критерий Краскела-Уоллиса})\), но не генотип самцов \((H_{2,21}=1,39, \ p=0,24, \ \text{критерий Краскела-Уоллиса})\). Поскольку генотип самцов не вносил значимого вклада в дисперсию данного признака, а влияние запаховой среды имело одннаправленный характер (рис.16А) для обеих линий, данные по обоим генотипам были объединены после предварительного центрирования относительно средних значений для каждой линии (рис. 16Б). Так, концентрация тестостерона в плазме самцов значимо возрастала в ответ на экспозицию запахом мочи самок, тогда как в ответ на ДМП повышение концентрации наблюдалось лишь на уровне тенденции (рис 8Б).

Остаточные дисперсии концентраций тестостерона и кортикостерона достоверно отрицательно коррелировали между собой \((R=-0,44, \ p=0,004; \ \text{ранговая корреляция Спирмена})\).
Рис. 16. Концентрация тестостерона (А) и остаточные дисперсии концентраций тестостерона (Б) в плазме при экспозиции запахом мочи самок и феромона самок 2,5-диметилпиразина. * – $p=0.01$, относительно контроля, U-критерий Манна-Уитни.
3.4. Реакция мукозального иммунитета легких и эндокринный ответ на интраназальную аппликацию суспензии нано- и микроразмерных частиц Таркосила 25 (Эксперимент 4)

3.4.1. Показатели бронхоальвеолярного лаважа

Интраназальная аппликация наноТ вызывала статистически значимое увеличение числа лейкоцитов в БАЛ самцов линии BALB/c (табл. 5). После аппликации микроТ их количество не отличалось от контроля, и было достоверно меньшим, чем при введении наноТ. Аппликация суспензий, содержащих Таркосил 25, не влияла на количество клеток БАЛ у мышей линии C57Bl (F\(_{1,21}=0,09, p=0,91\)) (табл. 5).

Число тромбоцитов в БАЛ не зависело от генотипа (F\(_{1,52}=0,31, p=0,74\)). Однако интраназальная аппликация (F\(_{1,52}=11,39, p=0,002\)) и взаимодействие факторов (генотип и введение препаратов, F\(_{1,52}=5,38, p=0,008\)) оказывали статистически значимый эффект на количество тромбоцитов в БАЛ. Так, у самцов линии BALB/c их количество возрастало в ответ на введение наноТ, тогда как у самцов линии C57Bl достоверно снижалось в ответ на микроТ, по сравнению с контрольными животными (табл. 5).

Как показал двухфакторный дисперсионный анализ, ни введение таркосила (F\(_{1,51}=0,26, p=0,77\)), ни генетическая принадлежность исследуемых животных (F\(_{1,51}=2,23, p=0,14\)), ни их взаимодействие (F\(_{1,51}=0,29, p=0,75\)) не влияли на концентрацию белка в БАЛ (табл. 5). Пероксидазная активность в БАЛ (табл. 5) также не зависела от этих факторов (генотип – F\(_{1,52}=0,85, p=0,43\); введение таркосила – F\(_{1,52}=0,002, p=0,96\); взаимодействие факторов – F\(_{1,52}=0,44, p=0,65\)).
Таблица 5

Общее число лейкоцитов, тромбоцитов, концентрация белка и пероксидазная активность в БАЛ самцов мышей линий BALB/c и C57Bl через 4 часа после интраназального введения наноТ и микроТ

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Линия</th>
<th>Контроль (N)</th>
<th>наноТ (N)</th>
<th>микроТ (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Лейкоциты ×10⁹/мл</td>
<td>BALB/c</td>
<td>38,1±4,8(9)</td>
<td>66,9±12,2(10)</td>
<td>42,7±8,8(12)</td>
</tr>
<tr>
<td></td>
<td>C57Bl</td>
<td>35,0±6,0(6)</td>
<td>33,3±3,2(7)</td>
<td>36,2±4,7(8)</td>
</tr>
<tr>
<td>Тромбоциты×10⁵/мл</td>
<td>BALB/c</td>
<td>37,5±2,1(9)</td>
<td>48,7±3,5(10)</td>
<td>46,1±3,8(12)</td>
</tr>
<tr>
<td></td>
<td>C57Bl</td>
<td>41,6±5,6(6)</td>
<td>31,8±2,9(7)</td>
<td>29,2±1,8(8)</td>
</tr>
<tr>
<td>Концентрация белка, мкг/мл</td>
<td>BALB/c</td>
<td>163,3±19,9(9)</td>
<td>187,2±29,9(10)</td>
<td>160,2±11,2(12)</td>
</tr>
<tr>
<td></td>
<td>C57Bl</td>
<td>208,8±26,8(5)</td>
<td>196,3±30,6(7)</td>
<td>192,3±15,9(8)</td>
</tr>
<tr>
<td>Пероксидазная активность, у.е.</td>
<td>BALB/c</td>
<td>2,0±0,4(9)</td>
<td>2,2±0,4(10)</td>
<td>2,0±0,3(12)</td>
</tr>
<tr>
<td></td>
<td>C57Bl</td>
<td>2,2±0,4(6)</td>
<td>2,4±0,5(7)</td>
<td>1,6±0,2(8)</td>
</tr>
</tbody>
</table>

Примечание: разными надстрочными буквами обозначены средние, достоверно отличающиеся друг от друга (p<0.05, критерий наименьшей значимой разницы).

Содержание цитокинов во многих образцах БАЛ было ниже уровня детектирования. Причем по большинству цитокинов, за исключением ФНОα, не выявлено статистически значимых межлинейных различий. Уровень ФНОα в БАЛ был многократно выше у линии BALB/c по сравнению с линией C57Bl (рис. 17). Из-за большого разброса индивидуальных значений мы не выявили статистически значимых изменений содержания цитокинов при интраназальной аппликации наноТ или микроТ.
Рис. 17. Концентрация цитокинов в БАЛ у мышей линий BALB/c и C57Bl. Средние значения (±SE) по всем экспериментальным группам каждой линии.

* - статистически значимое различие между линиями (p<0,001, T-критерий Стьюдента) по уровню ФНОα.

3.4.2. Интегральная реакция мукозального иммунитета легких

Для комплексной оценки реакции мукозального иммунитета на введение наночастиц данные о количестве лейкоцитов и тромбоцитов, пероксидазной активности и содержании цитокинов в БАЛ были проанализированы методом главных компонент (ГК). Поскольку концентрации ИЛ-2, ИЛ-5, ИЛ-10 и ИНФ-γ оказались ниже уровня детектирования более чем в 80 % измерений, то их значения не были включены в анализ. По оставшимся признакам было выделено две ГК, объясняющих 53,3 % общей дисперсии (табл. 6). Статистически значимый вклад в ГК1 вносили все проанализированные цитокины, а также число лейкоцитов и тромбоцитов в БАЛ. Как известно, вошедшие в ГК1 ФНОα, ГМ-КСФ, ИЛ-12p70 секретируются активированными
макрофагами, а ИЛ-4 базофилами и тучными клетками (Kleemann et al., 2008; Schneider, 2010). Поэтому данная компонента может быть принята в качестве интегральной характеристики воспалительной реакции, изменчивость которой определяется миграцией лейкоцитов в легкие и повышением их цитокин-секретирующей способности. В ГК2 положительный вклад вносили ФНОα и пероксидазная активность, а отрицательный ИЛ-4 и ИЛ-12p70 (табл. 6). Эта компонента также отражает воспалительную реакцию, но, в первую очередь, ту ее составляющую, которая обусловлена активацией гранулоцитарных лейкоцитов, продуцирующих пероксидазу. Участие ФНОα в повышении пероксидазной активности может быть опосредовано влиянием на нейтрофилы, эозинофилы и тучные клетки легочного эпителия (Belvisi et al., 2004).

Двухфакторный дисперсионный анализ ГК1 показал, что на изменчивость данного признака статистически значимо влияли линейная принадлежность животного ($F_{1,36}=7.86, p=0.008$) и взаимодействие факторов - генотип X введение Таркосила 25 ($F_{2,36}=3.75, p=0.03$). Собственный эффект интраназальной аппликации наноТ и микроТ был статистически незначим ($F_{2,36}=1.70, p=0.20$). У самцов линии BALB/c значения ГК1 были максимальными при аппликации наноТ и статистически значимо отличались от таковых при интраназальном введении физиологического раствора (контроль) или микроТ (рис. 18). При воздействии наноТ значения ГК1 у линии BALB/c превосходили соответствующие значения показателя у линии C57Bl, у которых отсутствовали изменения ГК1 в отв опыт введение Таркосила 25.

Для ГК2 не было выявлено статистически значимого влияния ни одного из анализируемых факторов: эффект генотипа - $F_{1,36}=3.30, p=0.08$; эффект аппликации препаратов - $F_{2,36}=0.40, p=0.67$; взаимодействие факторов - $F_{2,36}=1.83, p=0.18$.
Таблица 6

Вклад лейкоцитов, тромбоцитов, пероксидазной активности и концентрации цитокинов в главные компоненты (ГК) для показателей БАЛ

<table>
<thead>
<tr>
<th>Показатель</th>
<th>ГК1</th>
<th>ГК2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Лейкоциты в БАЛ</td>
<td>0.758</td>
<td>0.183</td>
</tr>
<tr>
<td>Тромбоциты в БАЛ</td>
<td>0.453</td>
<td>0.281</td>
</tr>
<tr>
<td>Пероксидазная активность</td>
<td>0.168</td>
<td>0.517</td>
</tr>
<tr>
<td>ИЛ-4</td>
<td>0.622</td>
<td>-0.633</td>
</tr>
<tr>
<td>ИЛ-12(p70)</td>
<td>0.662</td>
<td>-0.639</td>
</tr>
<tr>
<td>ГМ-КСФ</td>
<td>0.351</td>
<td>0.354</td>
</tr>
<tr>
<td>ФНОα</td>
<td>0.548</td>
<td>0.619</td>
</tr>
<tr>
<td>Вклад в общую изменчивость, %</td>
<td>28.4</td>
<td>24.9</td>
</tr>
</tbody>
</table>

Примечание: жирным шрифтом выделены переменные, которые достоверно коррелировали со значениями ГК1 и ГК2.
Рис. 18. Изменение ГК1, отражающей активацию воспалительных процессов в верхних дыхательных путях, у мышей линий BALB/c и C57Bl в ответ на интраназальную аппликацию суспензий, содержащих наночастицы (нанoТ<100 нм и микрoТ>100 нм) Таркосила 25.

* - $p<0.05$ (LSD тест);

- различия между линиями статистически значимы ($p=0.012$, $df=13$, $t=2.91$, тест Стьюдента).

3.4.3. Количество лейкоцитов в крови

После интраназальной аппликации Таркосила 25 нано- и микро-размера самцам линии BALB/c общее количество лейкоцитов, их отдельных форм и тромбоцитов в крови практически не изменялось (табл. 7). Тогда как у самцов C57Bl интраназальная аппликация нанoТ приводила к статистически значимому росту общего числа лейкоцитов, по сравнению с контролем, а микрoТ лишь к тенденции роста (рис. 19). При этом нанoТ вызывало
увеличение доли лейкоцитов среднего размера, образованных, главным образом, моноцитами, а введение микроТ приводило к повышению доли гранулоцитов (табл. 6). Доля лимфоцитов, соответственно, снижалась при введении каждого из препаратов. Число тромбоцитов в крови самцов C57Bl и их средний объем, как и в случае с мышами BALB/c, оставалось неизменным.

Таблица 7

Протенцные соотношения лимфоцитов, средних лейкоцитов и гранулоцитов и концентрация и средний объем тромбоцитов в крови самцов линий BALB/c и C57Bl через 4 часа после интраназального введения наноT и микроT

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Линия</th>
<th>Контроль (N)</th>
<th>наноT (N)</th>
<th>микроT (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Лимфоциты, %</td>
<td>BALB/c</td>
<td>65,9±2,6(7)</td>
<td>68,2±2,6(7)</td>
<td>71,0±3,0(8)</td>
</tr>
<tr>
<td></td>
<td>C57Bl</td>
<td>79,5±0,9(6)</td>
<td>70,1±2,8(7)</td>
<td>68,2±3,3(8)</td>
</tr>
<tr>
<td>Средние лейкоциты, %</td>
<td>BALB/c</td>
<td>16,1±0,9(7)</td>
<td>12,6±2,0(7)</td>
<td>14,5±1,1(8)</td>
</tr>
<tr>
<td></td>
<td>C57Bl</td>
<td>12,6±0,9(6)</td>
<td>18,4±2,1(7)</td>
<td>14,3±0,8(8)</td>
</tr>
<tr>
<td>Гранулоциты, %</td>
<td>BALB/c</td>
<td>18,0±2,9(7)</td>
<td>15,2±3,6(7)</td>
<td>14,4±2,1(8)</td>
</tr>
<tr>
<td></td>
<td>C57Bl</td>
<td>7,9±1,0(6)</td>
<td>11,5±2,6(7)</td>
<td>17,5±3,8(8)</td>
</tr>
<tr>
<td>Тромбоциты, ×10⁴/мкл</td>
<td>BALB/c</td>
<td>381,9±83,4(7)</td>
<td>284,1±64,8(7)</td>
<td>341,4±66,9(8)</td>
</tr>
<tr>
<td></td>
<td>C57Bl</td>
<td>459,8±86,9(6)</td>
<td>557,0±61,8(7)</td>
<td>443,8±66,3(8)</td>
</tr>
<tr>
<td>Средний объем тромбоцитов, фл</td>
<td>BALB/c</td>
<td>7,8±0,3(7)</td>
<td>8,3±0,5(7)</td>
<td>8,3±0,3(8)</td>
</tr>
<tr>
<td></td>
<td>C57Bl</td>
<td>8,5±0,2(6)</td>
<td>7,9±0,2(7)</td>
<td>8,2±0,4(8)</td>
</tr>
</tbody>
</table>

Примечание: Разными буквами обозначены статистически значимо различающиеся средние (p<0,05, критерий наименьшей значимой разности).
Рис. 19. Общее количество лейкоцитов в крови самцов мышей линий BALB/c и C57Bl через 4 часа после интраназальной аппликации суспензии частиц Таркосила 25 наноразмера (наноТ) и микроразмера (микроТ). Разными буквами над столбцами обозначены статистически значимо различающиеся средние (р<0,05, критерий наименьшей значимой разности).

3.4.4. Кортикостерон в плазме крови

Как показал двухфакторный дисперсионный анализ, концентрация кортикостерона в плазме крови (рис. 20А) самцов зависела от генотипа (F1,52=4,42, p=0,04) и введения Таркосила 25 (F1,52=4,35, p=0,02). Поскольку эффект взаимодействия этих факторов не был статистически значимым (F1,52=0,67, p=0,51), данные по обоим генотипам были объединены после предварительного центрирования относительно средних значений для каждой линии (рис. 20Б). Так, концентрация кортикостерона в крови самцов повышалась только в ответ на введение наноразмерных частиц Таркосила 25 (рис. 20Б).
Рис. 20. Концентрация кортикостерона (А) и остаточные дисперсии концентраций кортикостерона (Б) в плазме крови самцов линий BALB/c и C57Bl через 4 часа после введения наноТ и микроТ. Разными буквами над столбцами обозначены статистически значимо различающиеся средние величины (p<0,05, критерий наименьшей значимой разности).

3.4.5. Тестостерон в плазме крови

Концентрация тестостерона в плазме крови самцов линий BALB/c и C57Bl (рис. 21) не зависит от генотипа (F_{1,51}=0,48, p=0,49), интраназального введения Таркосила 25 (F_{1,51}=0,56, p=0,58), а также от взаимодействия этих факторов (F_{1,51}=1,94, p=0,16).
Рис. 21. Концентрация тестостерона в плазме крови самцов линий BALB/c и C57Bl через 4 часа после интраназальной аппликации наноТ и микроT.
3.5. Иммуно-эндокринная реакция на многократную экспозицию аэрозolem наночастиц Таркосила 25 у самцов мышей, различающихся по типу иммунного ответа (Эксперимент 5)

3.5.1. Содержание кремния в органах

Для изучения проникновения и накопления наночастиц Таркосила 25 в организме самцов мышей, подвергшихся десятидневной аэрозольной экспозиции, в тканях обонятельных луковиц, печени, почек, селезенки, семенников и сердца определяли содержание кремния методом атомно-абсорбционной и атомно-эмиссионной спектрометрии. Двухфакторный дисперсионный анализ полученных данных (табл. 8) показал, что экспозиция наноаэрозолем статистически значимо влияла на содержание кремния только в обонятельных луковицах и почках. При этом межлинейных различий в концентрации кремния во всех исследованных органах, кроме сердца, не было выявлено. Эффект взаимодействия факторов генотип и воздействие не был статистически значим ни в одном из случаев. В связи с этим данные по содержанию кремния в тканях органов были объединены для обеих линий (рис. 22). Оказалось, что содержание кремния в обонятельных луковицах и почках животных, подвергшихся хронической десятидневной экспозиции наноаэрозолем Таркосила 25, было значимо выше, чем у контрольных животных. При этом у животных экспериментальной группы содержание кремния в обонятельных луковицах превосходило таковое контрольных животных более чем в 3,5 раза, а в почках только в 1,5 раза (рис. 22).
Двухфакторный дисперсионный анализ для логарифмированных значений содержания кремния в тканях обонятельных луковиц, печени, почек, селезенки, семенников и сердца с факторами генотип или экспозиция наноаэрозолем Таркосила 25

<table>
<thead>
<tr>
<th>Содержание кремния в органах</th>
<th>Факторы</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Генотип</td>
</tr>
<tr>
<td>Обонятельные луковицы</td>
<td>$F_{1,24}=0,69; p=0,42$</td>
</tr>
<tr>
<td>Печень</td>
<td>$F_{1,24}=1,43; p=0,25$</td>
</tr>
<tr>
<td>Почки</td>
<td>$F_{1,19}=1,65; p=0,22$</td>
</tr>
<tr>
<td>Селезенка</td>
<td>$F_{1,23}=1,20; p=0,29$</td>
</tr>
<tr>
<td>Семенники</td>
<td>$F_{1,16}=1,54; p=0,24$</td>
</tr>
<tr>
<td>Сердце</td>
<td>$F_{1,17}=18,4; <0,001$</td>
</tr>
</tbody>
</table>

Примечание: жирным шрифтом выделены статистически значимые влияния факторов.
Рис. 22. Содержание кремния в тканях обонятельных луковиц (мг/г сухого веса), печени, почек, селезенки, семенников и сердца самцов мышей линии C57Bl и линии BALB/c после 10 дней хронической экспозиции наноаэрозолем Таркосила 25. *- p<0,05, Т-тест Стьюдента для логарифмированных значений.

3.5.2. Показатели бронхоальвеолярного лаважа

Общее число лейкоцитов в БАЛ самцов мышей после хронической экспозиции аэрозолем наночастиц Таркосила 25 зависело только от воздействия ($F_{1,24}=10,39$, $p=0,004$, для логарифмированных значений), влияние генотипа было близко к статистически значимому ($F_{1,24}=3,23$, $p=0,09$, для логарифмированных значений). Эффект взаимодействия этих факторов не был статистически значимым ($F_{1,24}=2,85$, $p=0,11$, для логарифмированных значений), что позволило объединить данные, полученные от обеих линий мышей (рис. 23). Так, лейкоцитарная интервенция в легкие самцов мышей достоверно усиливалась в ответ на хроническую экспозицию наноаэрозолем Таркосила 25 ($df=30$, $p=0,03$, Т-тест Стьюдента для логарифмированных значений).
Рис. 23. Общее число лейкоцитов в БАЛ самцом мышей через 10 дней после начала хронической экспозиции аэрозолем наночастиц Таркосила 25. * – $p=0.03$ по сравнению с контрольными самцами (T-тест Стьюдента для логарифмированных значений).

При анализе концентраций цитокинов ГМ-КСФ, ФНО-α и ИЛ-1β в образцах БАЛ не было выявлено каких-либо статистически значимых различий (рис. 24).
Рис. 24. Концентрация цитокинов ГМ-КСФ, ФНО-α и ИЛ-1β в БАЛ самцов линий C57Bl и BALB/c после 10 суток хронической экспозиции аэрозолем наночастиц Таркосила 25.

3.5.3. Количество лейкоцитов в крови

Статистический анализ показал, что 10-ти дневная экспозиция самцов мышей исследуемых линий аэрозолем наночастиц Таркосила 25 не вызывала значимых эффектов в отношении показателей крови (табл. 10). Так, общее число лейкоцитов в крови, процентные соотношения их типов, а также общее число и объем тромбоцитов не изменились в ответ на воздействие.
Таблица 10

Общее число лейкоцитов, доли лимфоцитов, средних лейкоцитов и гранулоцитов, а также количество и объем тромбоцитов в крови самцов линий BALB/c и C57Bl после 10 суток хронической экспозиции аэрозолем наночастиц Таркосила 25

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Линия</th>
<th>Контроль (N)</th>
<th>Аэрозоль Таркосила 25 (N)</th>
<th>U-критерий Манна-Уитни</th>
</tr>
</thead>
<tbody>
<tr>
<td>Лейкоциты, $\times 10^3$/мкл</td>
<td>BALB/c</td>
<td>4,8±07 (6)</td>
<td>4,4±0,4(6)</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>C57Bl</td>
<td>4,7± 3,6(6)</td>
<td>6,11±1,4(6)</td>
<td>0,72</td>
</tr>
<tr>
<td>Лимфоциты, %</td>
<td>BALB/c</td>
<td>75,4±3,6(6)</td>
<td>76,7±2,2(6)</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>C57Bl</td>
<td>85,5±12(6)</td>
<td>75,8±5,1(6)</td>
<td>1,60</td>
</tr>
<tr>
<td>Средние лейкоциты,%</td>
<td>BALB/c</td>
<td>13,3±0,3(6)</td>
<td>14,0±0,2(6)</td>
<td>1,68</td>
</tr>
<tr>
<td></td>
<td>C57Bl</td>
<td>10,9±0,7(6)</td>
<td>11,5±0,4(6)</td>
<td>0,48</td>
</tr>
<tr>
<td>Гранулоциты, %</td>
<td>BALB/c</td>
<td>11,4±3,7(6)</td>
<td>9,4±2,3(6)</td>
<td>0,40</td>
</tr>
<tr>
<td></td>
<td>C57Bl</td>
<td>3,5±0,5(6)</td>
<td>12,7±4,8(6)</td>
<td>1,44</td>
</tr>
<tr>
<td>Тромбоциты,$\times 10^3$/мкл</td>
<td>BALB/c</td>
<td>482,8±53,3(6)</td>
<td>498,7±51,9(6)</td>
<td>0,32</td>
</tr>
<tr>
<td></td>
<td>C57Bl</td>
<td>443,0±49,3(6)</td>
<td>456,3±41,8(6)</td>
<td>0,32</td>
</tr>
<tr>
<td>Объем тромбоцитов, фл</td>
<td>BALB/c</td>
<td>9,0±0,2(6)</td>
<td>8,9±0,2(6)</td>
<td>0,40</td>
</tr>
<tr>
<td></td>
<td>C57Bl</td>
<td>8,8±0,2(6)</td>
<td>9,1±0,1(6)</td>
<td>0,80</td>
</tr>
</tbody>
</table>

3.5.4. Кортикостерон в плазме крови

В отношении концентраций кортикостерона в плазме крови (рис. 25) самцов были выявлены только межлинейные различия ($F_{1,24}=26,79$, $p<0,0001$, двухфакторный дисперсионный анализ). Эффект хронического воздействия наноаэрозоля и эффект взаимодействия факторов не были статистически значимыми ($F_{1,24}=0,0031$, $p=0,96$ и $F_{1,24}=0,78$, $p=0,39$, соответственно). При этом концентрация кортикостерона после объединения данных, полученных от
контрольной и экспериментальной групп, в крови самцов линии BALB/c (431,4±41,9 нг/мл) была значимо выше, чем у самцов линии C57Bl (158,7±29,4 нг/мл, \(t=5,33, df=22, p<0,0001 \), T-тест Стьюдента).

![Bar chart showing cortisol levels in the blood of male lines C57Bl and BALB/c after 10 days of chronic exposure to the aerosol Tarkosil 25.]

Рис. 25. Концентрация кортикостерона в плазме крови самцов линий C57Bl и BALB/c после 10 суток хронической экспозиции аэрозолем наночастиц Таркосила 25.

3.5.5. Тестостерон в плазме крови

Концентрация тестостерона в плазме крови самцов обеих линий не изменялась в ответ на воздействие наноаэрозолем Таркосила 25 (рис. 26). Влияние генотипа – \(F_{1,24}=3,79, p=0,07 \), влияние воздействия – \(F_{1,24}=2,26, p=0,15 \), эффект взаимодействия факторов - \(F_{1,24}=0,19, p=0,67 \) (двухфакторный дисперсионный анализ).
Рис. 26. Концентрация тестостерона в плазме крови самцов линий C57Bl и BALB/c после 10 суток хронической экспозиции аэрозолем наночастиц Таркосила 25.
ГЛАВА 4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Внутривидовые взаимодействия между особями являются одним из основных путей межорганизменного обмена возбудителями респираторных заболеваний (Baker, 1998; Altizer et al., 2003; Hinson et al., 2004; Lanyon et al., 2007). Они неизбежны у видов с половым размножением. Поэтому следует ожидать, что реакция иммунной системы на различные социальные сигналы, предшествующие близким контактам особей одного вида, может иметь адаптивное значение, как механизм, ограничивающий внутрипопуляционное распространение возбудителей респираторных заболеваний.

Ранее в нашей лаборатории было показано, что длительная экспозиция самцов мышей запахом загрязненной подстилки самок приводит к мобилизации лейкоцитов в легкие (Litvinova и др., 2009; Litvinova et al., 2009). Защитная значимость такой мобилизации была подтверждена в экспериментах с заражением самцов мышей вирусом гриппа. Для 50-ти процентной смертности (ЛД 50) самцов мышей, получавших хемосигналы самок, требовалась в 30 раз большая доза вируса гриппа по сравнению с таковой у самцов, изолированных от запаха самок (Litvinova et al., 2010).

Для того чтобы мобилизация лейкоцитов в верхние дыхательные пути под влиянием социальных стимулов выполняла защитную функцию, она должна происходить достаточно быстро. Наши эксперименты с введением мочи самок, используемой в качестве источника хемосигналов, показывают, что уже через 2 часа после воздействия отмечается мобилизация лейкоцитов в легкие, которая по количеству клеток белой крови соответствует или даже превосходит реакцию, вызванную общепринятым индуктором воспаления бактериальным ЛПС. Характерно, что сочетанное воздействие мочи самок и бактериального ЛПС существенно повышают только общий размер лейкоцитарных агрегаций. Это говорит о том, что совместное действие хемосигналов самок и воспалительных факторов создает дополнительные предпосылки для
дальнейшего образования очагов воспаления. Эффект же хемосигналов реализуется в виде диффузной интервенции лейкоцитов в ткань легкого.

При сопоставимом с ЛПС влиянии на мобилизацию лейкоцитов, запаховые стимулы не приводят к повышению концентрации ИЛ-1β в тканях легкого и гипоталамуса. Поэтому их действие на механизмы неспецифического иммунитета легких не сопровождается активацией ГГНС. В свою очередь, ЛПС сам по себе, а также в комбинации с мочой самок вызывает повышение концентрации кортикостерона и снижение концентрации тестостерона в крови. Эти цитокиновые и гормональные изменения типичны для реакции организма на интраназальное или внутрибрюшинное введение бактериального эндотоксина и других патоген-ассоциированных молекулярных паттернов (Dunn, 1993; Tilders et al., 1994). Различный характер реагирования на мочу самок и ЛПС хорошо иллюстрирует метод главных компонент. На основании этого метода показано, что более половины дисперсии объясняют первые 2 ГК. Первая ГК отражает мобилизацию лейкоцитов, повышение ИЛ-1β в легких и подавление эндокринной функции гонад. Статистически значимое увеличение этой компоненты относительно контрольной группы было отмечено у самцов, которым вводили ЛПС или мочу самок в сочетании с ЛПС. Значение первой ГК при воздействии хемосигналов самок занимает промежуточное положение. Вариации второй ГК, с которой положительно коррелирует общее число лейкоцитов и отрицательно коррелирует концентрация кортикостерона в крови и ИЛ-1β в гипоталамусе, отчетливо дифференцируют эффекты, вызванные интраназальной аппликацией мочи самок и бактериального ЛПС. При этом моча самок обеспечивает эффективную интервенцию лейкоцитов в легкие при одновременном подавлении механизмов неспецифической адаптивной реакции, что радикально отличается от эффектов бактериального эндотоксина, вызывающего повышение ИЛ-1β в гипоталамусе и кортикостерона в крови.

Известно, что реакция мукоzystального иммунитета легких на инфекционные стимулы зависит от генотипа животных, в частности от
преобладания клеточного или гуморального иммунного ответа (Mills et al., 2000; Rosas et al., 2005; Paula et al., 2010). Поэтому для понимания роли и места активацции неспецифической иммунной защиты в ответ на социальные стимулы важно понять, в какой мере характер этих реакций зависит от генотипа рецепторов социальных сигналов. Наши исследования, выполненные на генетических линиях мышей, характеризующихся преобладанием клеточного (C57Bl) или гуморального (BALB/c) типов иммунного ответа показали, что только у самцов BALB/c интраназальная аппликация мочи половозрелых самок вызывает статистически значимое увеличение числа лейкоцитов и концентрации белка в БАЛ. Тогда как у мышей, характеризующихся преобладанием клеточного иммунного ответа, изменения были статистически не значимыми. Разница в реакции на имmunогенные стимулы имеют место и при введении бактериального ЛПС.

В данном эксперименте помимо уже исследованных на аутбредных мышах ICR эффектов бактериального эндотоксина и интраназальной аппликации мочи самок было проанализировано действие мочевины, как одного из наиболее массовых компонентов мочи. При этом не было установлено существенного влияния интраназальной аппликации мочевины на количество лейкоцитов и концентрацию белка в БАЛ.

Несмотря на то, что у мышей линии C57Bl не выявлено реакции мукозального иммунитета на введение в носовую полость ЛПС, мочи самок или мочевины, у них, как и у мышей линии BALB/c отмечено изменение концентрации кортикоэстерона в крови, которая достигала максимальных значений при введении ЛПС. Таким образом, как и в эксперименте на линии мышей ICR, моча самок вызывает выраженную активацию мукозального иммунитета легких при меньшем развитии состоянии стресса по сравнению с общепринятым имmunогенным фактором бактериальным ЛПС. В отличие от эксперимента на аутбредных мышах, все использованные для интраназальной аппликации препараты вызывали у мышей линии BALB/c подавление
эндокринной функции гонад. У самцов линии C57Bl этот эффект не наблюдался.

Использование мочи половозрелых самок как наиболее естественного полового хемосигнала не исключает возможного влияния бактериальной микрофлоры, содержащейся в моче, на иммунную реакцию самцов реципиентов. Для ответа на вопрос, в какой мере дистантное восприятие запаха может подействовать на иммунологические характеристики самцов, был поставлен эксперимент на двух линиях мышей BALB/c и C57Bl, в котором самцы были экспонированы запахом мочи самок и одним из половых феромонов самок - 2,5-диметилпиразином (ДМП). Методика этого эксперимента исключала прямой контакт животных с источником запаховых сигналов (моча самок и ДМП), кроме того эксперимент был поставлен на животных, свободных от видоспецифических патогенов.

У мышей линии BALB/c выявлена меньшая, чем в эксперименте с интраназальным введением мочи, реакция на запах половозрелых самок. В данном случае не наблюдалось статистически значимого увеличения числа лейкоцитов, тромбоцитов и концентрации белка в БАЛ, но, судя по существенному увеличению пероксидазной активности в образцах БАЛ, хемосигналы самок вызывали активацию иммунокомпетентных клеток, входящих в состав мукозального слоя легких. Эффект ДМП проявлялся только в увеличении количества тромбоцитов в БАЛ. У мышей линии C57Bl, как и в случае с интраназальной аппликацией, статистически значимой реакции в ответ на образцы запаха не установлено.

Следует отметить, что в экспериментах, выполненных в SPF-виварии университета города Тохоку (Япония) сотрудниками нашей лаборатории (Litvinova et al., 2009), было установлено, что экспозиция самцов в течение трех недель запахом загрязненной подстилки самок не вызывает существенных изменений числа иммунокомпетентных клеток в БАЛ. Экспозиция запахом самок приобретает статистически значимый иммуностимулирующий эффект.
при дополнительном воздействии на подопытных животных аэрозолем яичного альбумина. Сопоставляя результаты этого эксперимента с данными по заражению самцов мышей вирусом гриппа, можно отметить своеобразный трейд-офф в действии хемосигналов самок. Их наличие с одной стороны увеличивает устойчивость самцов к респираторным инфекциям, а с другой стороны создает предпосылки для развития аллергических реакций. Последнее предположение было подтверждено экспериментами, выполненными в университете Тохоку, которые показали, что в стандартной экспериментальной модели аллергии верхних дыхательных путей у самцов линии BALB/c, экспонированных запахом самок, имеет место более выраженная инфильтрация легких эозинофилами, по сравнению с таковой у самцов, не получавших запаха самок (Odo et al, личное сообщение).

Если изменение количества лейкоцитов в БАЛ у мышей линии C57Bl было статистически не значимым, то в крови их число падало в ответ на экспозицию запахом ДМП. Это происходило главным образом за счет уменьшения числа моноцитов. Поскольку вариации числа моноцитов в крови связаны с их миграцией в органы и ткани, где они трансформируются в макрофаги, наблюдаемое нами падение числа лейкоцитов среднего размера, основную долю которых составляют моноциты, может рассматриваться как усиление иммунной защиты на периферии. Такая реакция хорошо вписывается в общую логику защитных реакций организма, основанных на сигналах о потенциальных инфекционных рисках. Дело в том, что ДМП является феромоном, который у самок мышей синтезируется в большом количестве при высокой популяционной плотности, а высокая популяционная плотность, как правило, приводит к межсамцовой агрессии и повреждению покровов (Poole and Morgan, 1973), что, соответственно, требует усиления неспецифического иммунитета в периферических тканях.

С этим предположением хорошо согласуется также увеличение числа тромбоцитов в крови при экспозиции запахом ДМП самцов линии BALB/c.
Снижение объема тромбоцитов позволяет предположить, что увеличение их числа сопровождается выходом зрелых тромбоцитов из депонирующих органов, которые характеризуются меньшими размерами, по сравнению с молодыми клетками. У самцов линии C57Bl число тромбоцитов не изменялось, но оно во всех экспериментальных группах было на уровне максимального значения, наблюдаемого у линии BALB после экспозиции запахом ДМП.

Итак, хемосигналы самок, которые оказывают стимулирующее влияние на половую функцию самцов, одновременно выступают в роли внутривидовых сигналов, «предупреждающих» об увеличении инфекционного риска, связанного с репродукцией. Этот риск относится не только к инфекциям, передающимся половым путем, но и к любым формам заражения, обусловленного контактом между особями одного вида (Altizer et al., 2003). Респираторные инфекции не являются исключением. Поскольку самцы мышей в ответ на хемосигналы самок усиливают поисковую активность, при этом они обнюхивают фекальные и мочевые метки, которые, как правило, контаминырованы патогенной и комменсальной микрофлорой (Baker, 1998). В репертуаре полового поведения мышей значительное место занимают назоназальные обнюхивания (Hull et al., 2006; Hull and Dominguez, 2007), что является благоприятным фоном для обмена респираторными патогенами. Из полученных нами данных можно сделать заключение о комплексном влиянии хемосигналов на нейроэндокринные и иммунные процессы, протекающие в организме рецепторных сигналов. Наряду с хорошо изученным влиянием запаховых стимулов на эндокринную функцию гонад, в наших экспериментах наблюдалась активация отдельных звеньев иммунной защиты.

Эта активация была наиболее выражена при попадании мочи самок в носовые полости самцов, что имеет место не только в эксперименте, но и в реальной жизни мышей, которые при изучении социальных запахов погружают носы в мочевые и фекальные метки конспецификов. Необходимость близкого соприкосновения с источником хемосигналов обусловлена тем, что при таком
контакте рецепторы вомернозального органа захватывают белки из семейства липокалинов, которые несут информацию о генотипе «хозяина» метки. Именно эти молекулы определяют формирование ольфакторной социальной памяти, играющей ключевую роль в упорядочивании внутривидовых взаимодействий (Hurst, 2009).

Следует отметить, что мы не можем полностью исключить бактериальный компонент в наблюдаемой реакции на интраназальное введение мочи самок. Однако защитные эффекты запаховых стимулов совпадают с таковыми при воздействии иммуногенных компонентов бактерий только в отношении мобилизации лейкоцитов в верхние дыхательные пути, тогда как при введении ЛПС наблюдаются такие иммунофизиологические изменения, как повышение концентрации в легких и гипоталамусе провоспалительных цитокинов (Card et al., 2006; Tonelli et al., 2008), активация гипоталамо-гипофизарно-надпочечникововой системы (Dunn, 1993; Tilders et al., 1994), подавление эндокринной функции гонад (Weil et al., 2006), развитие синдрома болезненного поведения (Zacharowski et al., 2006; Tonelli et al., 2008). В отличие от эффектов ЛПС или бактериальной инфекции, воздействие мочи самок или их хемосигналов вызывает мобилизацию лейкоцитов в легкие, но это происходит без участия одного из ключевых провоспалительных цитокинов ИЛ-1β и без активации физиологических механизмов стресса. Кроме того, эндокринная функция гонад либо не уменьшается, либо возрастает. Спонтанная активность и проявления внутривидовой агрессии, подавление которых относится к симптомам болезненного поведения, при воздействии хемосигналами самок также не падают, а скорее возрастают (Мошкин и др., 2004).

Различие иммунофизиологических паттернов реагирования на мочу самок и на ингалиацию бактерий указывает на наличие самостоятельных механизмов активации иммунной защиты, обусловленной социальными сигналами о возможном повышении инфекционного риска. Эти механизмы
практически не изучены, но совсем недавно появились экспериментальные доказательства, свидетельствующие о тесном взаимодействии запаховой рецепции и неспецифического иммунного распознавания (Li et al., 2013). В исследовании данной группы авторов показано, что макрофаги экспрессируют целый ряд обонятельных рецепторов. При этом сами по себе летучие соединения не оказывают существенного влияния на функцию макрофагов, оцененную по целому ряду параметров, среди которых особого внимания заслуживает активация хемокиновых генов. Но одоранты, в частности октаналь, значительно усиливают повышение экспрессии хемокиновых генов, вызванной добавлением в культуральную среду ЛПС в комплексе с гамма-интерфероном. В итоге можно ожидать более выраженную интервенцию лейкоцитов в области кооперативного воздействия на макрофаги иммуногенных стимулов и хемосигналов. К этим областям относится вся респираторная система, в слизистых которой присутствуют иммунокомпетентные клетки.

Среди неинфекционных стимулов для мукозального иммунитета легких заметное место отводится твердым аэрозолям, которые имеют различную природу и различные размеры. В данной работе были исследованы механизмы реакции мукозального иммунитета респираторной системы на интраназальную аппликацию или ингаляцию частиц Таркосила 25, который, будучи наполнителем различных красителей, производится в больших объемах. В эксперименте с интраназальной аппликацией, выполненным на мышах линий C57Bl и BALB/c было установлено, что через 4 часа после введения суспензий, содержащих нано- и микроразмерные частицы Таркосила 25 (наноТ и микроT) у мышей линии BALB/c повышалось содержание лейкоцитов в БАЛ. У линии C57Bl введение наночастиц не оказывало влияния на содержание клеток в БАЛ. Эти результаты хорошо согласуются с межлинейными различиями по реакции мукозального иммунитета легких на половые феромоны. И феромоны, и наночастицы вызывают мобилизацию иммунокомпетентных клеток в мукозальный слой легких только у генетической линии мышей, для которой...
характерно преобладание Th2-типа иммунного ответа. Для линии с преобладанием Th1-типа иммунного ответа статистически значимого прироста количества клеток в БАЛ не наблюдали. Различия в лейкоцитарной реакции на интраназальное введение наноТ и микроТ сочетается с неоднинаковым содержанием одного из ключевых факторов провоспалительной реакции – ФНОα. Хотя сама по себе концентрация цитокинов в БАЛ не показала статистически значимых изменений в ответ на введение наночастиц, при использовании многомерной статистики цитокины, лейкоциты и пероксидазная активность в БАЛ образуют комплекс, который можно охарактеризовать, как индикатор провоспалительных механизмов в ответ на действие частиц. При этом установлено, что наибольший эффект вызывают наноразмерные частицы, и этот эффект имеет место только у мышей линии BALB/c. В отличие от иммунологических показателей БАЛ, лейкоциты в крови показывают статистически значимую реакцию на интраназальное введение наноТ и микроТ у мышей линии C57Bl, у которых отмечается повышение относительного числа средних лейкоцитов и гранулоцитов.

Как показывают наши данные, интраназальное введение наноразмерных частиц Таркосила 25 вызывает стрессовую реакцию, что выражается в повышении концентрации кортикостерона в плазме крови у мышей обеих линий. В целом наши данные согласуются с исследованиями других авторов, показавших, что интраназальное введение наночастиц активирует механизмы неспецифического иммунитета легких (Wang et al., 2008; Chen et al., 2008b; Ling et al., 2010). Но они также дополняют имеющиеся представления о патофизиологическом действии наночастиц данными о существенной роли генотипа в реакции на наночастицы. Наши данные показывают также, что однократное введение в носовую полость наночастиц вызывает активацию ГГНС.

Естественным путем поступления наночастиц в организм является вдыхание наноразмерных и субмикронных аэрозолей. Используя методику
многократной экспозиции мышей аэрозолем Таркосила 25, содержащего частицы среднего размера 107 нм, мы установили, что наиболее значимый путь продвижения наночастиц в организм – это их поступление с поверхности верхних дыхательных путей в головной мозг. Об этом свидетельствует многократное увеличение концентрации кремния в тканях обонятельных луковиц, которое было наиболее выраженным по сравнению с другими органами при анализе накопления Si в организме.

В настоящее время активно обсуждается возможность эндоцитоза наночастиц на апикальной поверхности биполярных обонятельных нейронов и механизмы их продвижения на основе тубулярного транспорта (Henriksson et al., 2000; Persson et al., 2003; Oberdörster et al., 2004; Elder et al., 2006). Возможность такого пути доказывают недавние исследования, выполненные в нашей лаборатории, в которых было изучено поступление в головной мозг наночастиц гидроксида марганца с поверхности обонятельного эпителия. Эти частицы, благодаря позитивному контрасту при магнитно-резонансной томографии являются хорошим модельным объектом для решения вопроса о путях поступления наночастиц в организм. В пользу предположения о нейрональном захвате наночастиц обонятельными нейронами свидетельствуют эксперименты с ингибиторами основных процессов, определяющих этот захват, а именно введение хлорида кобальта, блокирующего кальциевые каналы, насыщение носовой полости ионами кальция, блокирующей кальциевый ток в обонятельных рецепторах, введение сахарозы, блокирующей клатрин-зависимый эндоцитоз, введение колхицина, блокирующего везикулярный транспорт, оказывали ингибитирующее влияние на перемещение наночастиц гидроксида марганца из носовой полости в обонятельные луковицы. Другим доказательством нейронального транспорта наночастиц являются томографические данные о перемещении гидроксида марганца в другие отделы головного мозга. Наблюдаемые при этом треки позитивного магнитного контраста, обусловленного путями передвижения гидроксида марганца, хорошо
совпадают с известными схемами пространственной организации обонятельной нервной системы (Мошкин, личное сообщение).

Таким образом, частицы Таркосила 25 при вдыхании попадают не только в легкие, о чем свидетельствует небольшой, но статистически значимый прирост концентрации кремния в периферических органах, в частности в почках, но и в головной мозг. Роль нейронального захвата наночастиц, как возможной причины активации мукозального иммунитета легких сегодня исключить нельзя, но конкретные механизмы требуют дальнейшего исследования.

Также как и интраназальная аппликация Таркосила 25, его ежедневная ингаляция приводила к повышению числа лейкоцитов в БАЛ, но в отличие от интраназального введения, данный эффект не зависел от генотипа. Более того, по приросту таких иммунокомпетентных клеток крови, как гранулоциты, реакция у мышей линии C57Bl была более выраженной, чем у BALB/c. Статистически значимое влияние Таркосила 25 на исследованные нами цитокины проявилось только в разнонаправленных изменениях концентрации ФНОα, которая возрастала в БАЛ мышей линии BALB/c и не повышалась у мышей линии С57Bl. В отличие от интраназальной аппликации, десятикратная ингаляция Таркосила 25 не оказывала влияния на различные клетки крови, а также на концентрацию кортикостерона и тестостерона в плазме крови.
ЗАКЛЮЧЕНИЕ

Таким образом, мукозальный слой легких, благодаря своим морфофункциональным характеристикам, находится в постоянном взаимодействии с параметрами окружающей среды и выполняет функцию барьера между кровяным руслом и присутствующими во вдыхаемом воздухе инфекционными и неинфекционными агентами. Как показали наши исследования, мобилизация иммунной защиты в мукозальном слое происходит под влиянием не только патогенов, но и социальных сигналов, предупреждающих о повышении рисков инфицирования. При этом хемосигналы самок активируют механизмы неспецифической иммунной защиты в мукозальном слое легких, но в отличие от ЛПС и наночастиц не оказывают стимулирующего влияния на секрецию провоспалительных цитокинов и не индуцируют развитие стресс-реакции. Еще одним неинфекционным фактором, влияющим на состояние мукозального барьера, являются твердые аэрозоли, которые попадают на слизистую носа при ольфакторном исследовании мочевых меток, а также попадают в воздушную среду, как при антропогенном загрязнении, так и при извержении вулканов, пыльных буянах, лесных пожарах.

Сопоставляя паттерны реакции на неинфекционные стимулы разной природы можно отметить, что их эффекты совпадают только в отношении мобилизации лейкоцитов в легкие (табл. 11). Остальные звенья иммуно-эндокринного реагирования существенно различаются для ЛПС, хемосигналов и наночастиц, что говорит о специфичных для каждого иммуногенного стимула путях активации неспецифической иммунной защиты.
Сравнительный анализ иммунно-эндокринной реакции на инфекционные и неинфекционные стимулы

<table>
<thead>
<tr>
<th></th>
<th>Хемосигналы самок</th>
<th>Наночастицы</th>
<th>ЛПС</th>
</tr>
</thead>
<tbody>
<tr>
<td>Лейкоциты в легких</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Пероксидазная активность</td>
<td>↑</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Провоспалительные цитокины в легких</td>
<td>-</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Провоспалительные цитокины в гипоталамусе</td>
<td>-</td>
<td>Нет данных</td>
<td>↑</td>
</tr>
<tr>
<td>ГГНС</td>
<td>-</td>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>
ВЫВОДЫ

1. Контактное восприятие самцами мышей половых хемосигналов, моделируемое интраназальной аппликацией наиболее естественного запахового стимула – мочи половозрелых самок, вызывает быструю, в пределах двух часов, интервенцию лейкоцитов в легкие, которая по количественным характеристикам не отличается от таковой при интраназальном введении ЛПС;

2. Сопоставимая по величине лейкоцитарная реакция на аппликацию мочи самок не вызывает наблюдаемого при введении ЛПС увеличения концентрации ИЛ-1β в тканях легкого и гипotalамуса и, соответственно, не сопровождается повышением уровня кортикостерона в плазме крови;

3. Сравнительное изучение реакции мукозального иммунитета легких мышей, характеризующихся преобладанием гуморального (линия BALB/c) или клеточного (линия C57Bl) иммунных ответов, показало, что интраназальная аппликация мочи самок или ЛПС вызывает повышение числа лейкоцитов и концентрации белка в бронхоальвеолярном лаваже только у самцов BALB/c и не влияет на эти показатели у самцов C57Bl. Вместе с тем, у самцов обеих линий имеет место более выраженное увеличение уровня кортикостерона в плазме крови при интраназальном введении ЛПС по сравнению с аппликацией мочи самок;

4. Изучение легочных смывов при 24 ч экспозиции запахом мочи самок показало, что дистантное восприятие половых хемосигналов не влияет на число лейкоцитов, но увеличивает пероксидазную активность в бронхоальвеолярном лаваже. Этот эффект наблюдается только у самцов линии BALB/c и отсутствует у линии C57Bl;

5. Суточная экспозиция одним из феромонов стресса (2,5-диметилпиразином) приводит к увеличению количества тромбоцитов в крови и бронхоальвеолярном лаваже, но только у самцов линии BALB/c, имевших изначально более низкое число тромбоцитов по сравнению с линией C57Bl;
6. Интраназальная аппликация суспензии наноразмерных частиц Таркосила 25 активирует у мышей линии BALB/c, но не C57Bl, воспалительные процессы, оцененные по полученному методом главных компонент интегральному показателю, значимый вклад в который вносили число лейкоцитов, тромбоцитов и концентрации провоспалительных цитокинов в бронхоальвеолярном лаваже. Субмикронные агрегации Таркосила 25 были не эффективны;

7. Многодневная ингаляция наноразмерных частиц двуокиси кремния (Таркосил 25) приводит к увеличению числа лейкоцитов в бронхоальвеолярном лаваже мышей линий BALB/c и C57Bl и к разнонаправленным изменениям концентрации ФНО-α – повышению у линии BALB/c и понижению у линии C57Bl;

8. Оба типа неинфекционных стимулов (половые хемосигналы и наноразмерные твердые аэрозоли) вызывают более выраженную активацию неспецифической иммунной защиты верхних дыхательных путей у генетической линии мышей, характеризующейся преобладанием гуморального иммунного ответа (BALB/c), по сравнению с мышами, характеризующимися преобладанием клеточного ответа (C57Bl).
СПИСОК ЛИТЕРАТУРЫ

2. Лохмиллер, Р.Л. Экологические факторы и адаптивная значимость изменчивости иммунитета в популяциях мелких млекопитающих / Р.Л. Лохмиллер, М.П. Мошкин // Сиб. Экол. Ж. – 1999. – №1. – С. 37-58.

52. Crown, J.A. A phase I trial of recombinant human interleukin-1 beta alone and in combination with myelosuppressive doses of 5-fluorouracil in patients with

186. Vellucci, S.V. Increased body temperature, cortisol secretion, and hypothalamic expression of c-fos, corticotropin releasing hormone and

203. Zacharowski, K. Toll-like receptor 4 plays a crucial role in the immune-adrenal response to systemic inflammatory response syndrome / K.